Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(10x^{2}+19x+6\right)
Factor out 2.
a+b=19 ab=10\times 6=60
Consider 10x^{2}+19x+6. Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=4 b=15
The solution is the pair that gives sum 19.
\left(10x^{2}+4x\right)+\left(15x+6\right)
Rewrite 10x^{2}+19x+6 as \left(10x^{2}+4x\right)+\left(15x+6\right).
2x\left(5x+2\right)+3\left(5x+2\right)
Factor out 2x in the first and 3 in the second group.
\left(5x+2\right)\left(2x+3\right)
Factor out common term 5x+2 by using distributive property.
2\left(5x+2\right)\left(2x+3\right)
Rewrite the complete factored expression.
20x^{2}+38x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-38±\sqrt{38^{2}-4\times 20\times 12}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-38±\sqrt{1444-4\times 20\times 12}}{2\times 20}
Square 38.
x=\frac{-38±\sqrt{1444-80\times 12}}{2\times 20}
Multiply -4 times 20.
x=\frac{-38±\sqrt{1444-960}}{2\times 20}
Multiply -80 times 12.
x=\frac{-38±\sqrt{484}}{2\times 20}
Add 1444 to -960.
x=\frac{-38±22}{2\times 20}
Take the square root of 484.
x=\frac{-38±22}{40}
Multiply 2 times 20.
x=-\frac{16}{40}
Now solve the equation x=\frac{-38±22}{40} when ± is plus. Add -38 to 22.
x=-\frac{2}{5}
Reduce the fraction \frac{-16}{40} to lowest terms by extracting and canceling out 8.
x=-\frac{60}{40}
Now solve the equation x=\frac{-38±22}{40} when ± is minus. Subtract 22 from -38.
x=-\frac{3}{2}
Reduce the fraction \frac{-60}{40} to lowest terms by extracting and canceling out 20.
20x^{2}+38x+12=20\left(x-\left(-\frac{2}{5}\right)\right)\left(x-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{5} for x_{1} and -\frac{3}{2} for x_{2}.
20x^{2}+38x+12=20\left(x+\frac{2}{5}\right)\left(x+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20x^{2}+38x+12=20\times \frac{5x+2}{5}\left(x+\frac{3}{2}\right)
Add \frac{2}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}+38x+12=20\times \frac{5x+2}{5}\times \frac{2x+3}{2}
Add \frac{3}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}+38x+12=20\times \frac{\left(5x+2\right)\left(2x+3\right)}{5\times 2}
Multiply \frac{5x+2}{5} times \frac{2x+3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
20x^{2}+38x+12=20\times \frac{\left(5x+2\right)\left(2x+3\right)}{10}
Multiply 5 times 2.
20x^{2}+38x+12=2\left(5x+2\right)\left(2x+3\right)
Cancel out 10, the greatest common factor in 20 and 10.