Evaluate
\frac{60}{13}\approx 4.615384615
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5}{13} = 4\frac{8}{13} = 4.615384615384615
Share
Copied to clipboard
\frac{20}{\frac{6+1}{3}-\frac{4\times 3+1}{3}+\frac{6\times 3+1}{3}}
Multiply 2 and 3 to get 6.
\frac{20}{\frac{7}{3}-\frac{4\times 3+1}{3}+\frac{6\times 3+1}{3}}
Add 6 and 1 to get 7.
\frac{20}{\frac{7}{3}-\frac{12+1}{3}+\frac{6\times 3+1}{3}}
Multiply 4 and 3 to get 12.
\frac{20}{\frac{7}{3}-\frac{13}{3}+\frac{6\times 3+1}{3}}
Add 12 and 1 to get 13.
\frac{20}{\frac{7-13}{3}+\frac{6\times 3+1}{3}}
Since \frac{7}{3} and \frac{13}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{\frac{-6}{3}+\frac{6\times 3+1}{3}}
Subtract 13 from 7 to get -6.
\frac{20}{-2+\frac{6\times 3+1}{3}}
Divide -6 by 3 to get -2.
\frac{20}{-2+\frac{18+1}{3}}
Multiply 6 and 3 to get 18.
\frac{20}{-2+\frac{19}{3}}
Add 18 and 1 to get 19.
\frac{20}{-\frac{6}{3}+\frac{19}{3}}
Convert -2 to fraction -\frac{6}{3}.
\frac{20}{\frac{-6+19}{3}}
Since -\frac{6}{3} and \frac{19}{3} have the same denominator, add them by adding their numerators.
\frac{20}{\frac{13}{3}}
Add -6 and 19 to get 13.
20\times \frac{3}{13}
Divide 20 by \frac{13}{3} by multiplying 20 by the reciprocal of \frac{13}{3}.
\frac{20\times 3}{13}
Express 20\times \frac{3}{13} as a single fraction.
\frac{60}{13}
Multiply 20 and 3 to get 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}