Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

20=\frac{386}{200}t^{2}
Expand \frac{3.86}{2} by multiplying both numerator and the denominator by 100.
20=\frac{193}{100}t^{2}
Reduce the fraction \frac{386}{200} to lowest terms by extracting and canceling out 2.
\frac{193}{100}t^{2}=20
Swap sides so that all variable terms are on the left hand side.
t^{2}=20\times \frac{100}{193}
Multiply both sides by \frac{100}{193}, the reciprocal of \frac{193}{100}.
t^{2}=\frac{2000}{193}
Multiply 20 and \frac{100}{193} to get \frac{2000}{193}.
t=\frac{20\sqrt{965}}{193} t=-\frac{20\sqrt{965}}{193}
Take the square root of both sides of the equation.
20=\frac{386}{200}t^{2}
Expand \frac{3.86}{2} by multiplying both numerator and the denominator by 100.
20=\frac{193}{100}t^{2}
Reduce the fraction \frac{386}{200} to lowest terms by extracting and canceling out 2.
\frac{193}{100}t^{2}=20
Swap sides so that all variable terms are on the left hand side.
\frac{193}{100}t^{2}-20=0
Subtract 20 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times \frac{193}{100}\left(-20\right)}}{2\times \frac{193}{100}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{193}{100} for a, 0 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times \frac{193}{100}\left(-20\right)}}{2\times \frac{193}{100}}
Square 0.
t=\frac{0±\sqrt{-\frac{193}{25}\left(-20\right)}}{2\times \frac{193}{100}}
Multiply -4 times \frac{193}{100}.
t=\frac{0±\sqrt{\frac{772}{5}}}{2\times \frac{193}{100}}
Multiply -\frac{193}{25} times -20.
t=\frac{0±\frac{2\sqrt{965}}{5}}{2\times \frac{193}{100}}
Take the square root of \frac{772}{5}.
t=\frac{0±\frac{2\sqrt{965}}{5}}{\frac{193}{50}}
Multiply 2 times \frac{193}{100}.
t=\frac{20\sqrt{965}}{193}
Now solve the equation t=\frac{0±\frac{2\sqrt{965}}{5}}{\frac{193}{50}} when ± is plus.
t=-\frac{20\sqrt{965}}{193}
Now solve the equation t=\frac{0±\frac{2\sqrt{965}}{5}}{\frac{193}{50}} when ± is minus.
t=\frac{20\sqrt{965}}{193} t=-\frac{20\sqrt{965}}{193}
The equation is now solved.