Solve for b
b=5
Share
Copied to clipboard
20=\frac{5}{2}\left(3+b\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
20=\frac{5}{2}\times 3+\frac{5}{2}b
Use the distributive property to multiply \frac{5}{2} by 3+b.
20=\frac{5\times 3}{2}+\frac{5}{2}b
Express \frac{5}{2}\times 3 as a single fraction.
20=\frac{15}{2}+\frac{5}{2}b
Multiply 5 and 3 to get 15.
\frac{15}{2}+\frac{5}{2}b=20
Swap sides so that all variable terms are on the left hand side.
\frac{5}{2}b=20-\frac{15}{2}
Subtract \frac{15}{2} from both sides.
\frac{5}{2}b=\frac{40}{2}-\frac{15}{2}
Convert 20 to fraction \frac{40}{2}.
\frac{5}{2}b=\frac{40-15}{2}
Since \frac{40}{2} and \frac{15}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{2}b=\frac{25}{2}
Subtract 15 from 40 to get 25.
b=\frac{25}{2}\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
b=\frac{25\times 2}{2\times 5}
Multiply \frac{25}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
b=\frac{25}{5}
Cancel out 2 in both numerator and denominator.
b=5
Divide 25 by 5 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}