Solve for x
x=\frac{135-15y}{14}
Solve for y
y=-\frac{14x}{15}+9
Graph
Share
Copied to clipboard
2.8x=27-3y
Subtract 3y from both sides.
\frac{2.8x}{2.8}=\frac{27-3y}{2.8}
Divide both sides of the equation by 2.8, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{27-3y}{2.8}
Dividing by 2.8 undoes the multiplication by 2.8.
x=\frac{135-15y}{14}
Divide 27-3y by 2.8 by multiplying 27-3y by the reciprocal of 2.8.
3y=27-2.8x
Subtract 2.8x from both sides.
3y=-\frac{14x}{5}+27
The equation is in standard form.
\frac{3y}{3}=\frac{-\frac{14x}{5}+27}{3}
Divide both sides by 3.
y=\frac{-\frac{14x}{5}+27}{3}
Dividing by 3 undoes the multiplication by 3.
y=-\frac{14x}{15}+9
Divide 27-\frac{14x}{5} by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}