Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
2.8\left(\frac{2\times 3+1}{3\times 2.8}-1\right)+\frac{2\times 5+4}{5}
Express \frac{\frac{2\times 3+1}{3}}{2.8} as a single fraction.
2.8\left(\frac{6+1}{3\times 2.8}-1\right)+\frac{2\times 5+4}{5}
Multiply 2 and 3 to get 6.
2.8\left(\frac{7}{3\times 2.8}-1\right)+\frac{2\times 5+4}{5}
Add 6 and 1 to get 7.
2.8\left(\frac{7}{8.4}-1\right)+\frac{2\times 5+4}{5}
Multiply 3 and 2.8 to get 8.4.
2.8\left(\frac{70}{84}-1\right)+\frac{2\times 5+4}{5}
Expand \frac{7}{8.4} by multiplying both numerator and the denominator by 10.
2.8\left(\frac{5}{6}-1\right)+\frac{2\times 5+4}{5}
Reduce the fraction \frac{70}{84} to lowest terms by extracting and canceling out 14.
2.8\left(\frac{5}{6}-\frac{6}{6}\right)+\frac{2\times 5+4}{5}
Convert 1 to fraction \frac{6}{6}.
2.8\times \frac{5-6}{6}+\frac{2\times 5+4}{5}
Since \frac{5}{6} and \frac{6}{6} have the same denominator, subtract them by subtracting their numerators.
2.8\left(-\frac{1}{6}\right)+\frac{2\times 5+4}{5}
Subtract 6 from 5 to get -1.
\frac{14}{5}\left(-\frac{1}{6}\right)+\frac{2\times 5+4}{5}
Convert decimal number 2.8 to fraction \frac{28}{10}. Reduce the fraction \frac{28}{10} to lowest terms by extracting and canceling out 2.
\frac{14\left(-1\right)}{5\times 6}+\frac{2\times 5+4}{5}
Multiply \frac{14}{5} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-14}{30}+\frac{2\times 5+4}{5}
Do the multiplications in the fraction \frac{14\left(-1\right)}{5\times 6}.
-\frac{7}{15}+\frac{2\times 5+4}{5}
Reduce the fraction \frac{-14}{30} to lowest terms by extracting and canceling out 2.
-\frac{7}{15}+\frac{10+4}{5}
Multiply 2 and 5 to get 10.
-\frac{7}{15}+\frac{14}{5}
Add 10 and 4 to get 14.
-\frac{7}{15}+\frac{42}{15}
Least common multiple of 15 and 5 is 15. Convert -\frac{7}{15} and \frac{14}{5} to fractions with denominator 15.
\frac{-7+42}{15}
Since -\frac{7}{15} and \frac{42}{15} have the same denominator, add them by adding their numerators.
\frac{35}{15}
Add -7 and 42 to get 35.
\frac{7}{3}
Reduce the fraction \frac{35}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}