Solve for x
x=\frac{187z}{135}-\frac{79y}{27}
Solve for y
y=\frac{187z}{395}-\frac{27x}{79}
Share
Copied to clipboard
2.7x=3.74z-7.9y
Subtract 7.9y from both sides.
2.7x=\frac{187z}{50}-\frac{79y}{10}
The equation is in standard form.
\frac{2.7x}{2.7}=\frac{\frac{187z}{50}-\frac{79y}{10}}{2.7}
Divide both sides of the equation by 2.7, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{187z}{50}-\frac{79y}{10}}{2.7}
Dividing by 2.7 undoes the multiplication by 2.7.
x=\frac{187z}{135}-\frac{79y}{27}
Divide \frac{187z}{50}-\frac{79y}{10} by 2.7 by multiplying \frac{187z}{50}-\frac{79y}{10} by the reciprocal of 2.7.
7.9y=3.74z-2.7x
Subtract 2.7x from both sides.
7.9y=\frac{187z}{50}-\frac{27x}{10}
The equation is in standard form.
\frac{7.9y}{7.9}=\frac{\frac{187z}{50}-\frac{27x}{10}}{7.9}
Divide both sides of the equation by 7.9, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{\frac{187z}{50}-\frac{27x}{10}}{7.9}
Dividing by 7.9 undoes the multiplication by 7.9.
y=\frac{187z}{395}-\frac{27x}{79}
Divide \frac{187z}{50}-\frac{27x}{10} by 7.9 by multiplying \frac{187z}{50}-\frac{27x}{10} by the reciprocal of 7.9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}