Solve for x
x=-\frac{35y}{26}+\frac{275}{13}
Solve for y
y=-\frac{26x}{35}+\frac{110}{7}
Graph
Share
Copied to clipboard
2.6x=55-3.5y
Subtract 3.5y from both sides.
2.6x=-\frac{7y}{2}+55
The equation is in standard form.
\frac{2.6x}{2.6}=\frac{-\frac{7y}{2}+55}{2.6}
Divide both sides of the equation by 2.6, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{7y}{2}+55}{2.6}
Dividing by 2.6 undoes the multiplication by 2.6.
x=-\frac{35y}{26}+\frac{275}{13}
Divide 55-\frac{7y}{2} by 2.6 by multiplying 55-\frac{7y}{2} by the reciprocal of 2.6.
3.5y=55-2.6x
Subtract 2.6x from both sides.
3.5y=-\frac{13x}{5}+55
The equation is in standard form.
\frac{3.5y}{3.5}=\frac{-\frac{13x}{5}+55}{3.5}
Divide both sides of the equation by 3.5, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{13x}{5}+55}{3.5}
Dividing by 3.5 undoes the multiplication by 3.5.
y=-\frac{26x}{35}+\frac{110}{7}
Divide 55-\frac{13x}{5} by 3.5 by multiplying 55-\frac{13x}{5} by the reciprocal of 3.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}