Solve for x
x=0
Graph
Share
Copied to clipboard
2.6x-2.6=-6.5\left(x+1\right)-\frac{1}{2}\left(x-7.8\right)
Use the distributive property to multiply 2.6 by x-1.
2.6x-2.6=-6.5x-6.5-\frac{1}{2}\left(x-7.8\right)
Use the distributive property to multiply -6.5 by x+1.
2.6x-2.6=-6.5x-6.5-\frac{1}{2}x-\frac{1}{2}\left(-7.8\right)
Use the distributive property to multiply -\frac{1}{2} by x-7.8.
2.6x-2.6=-6.5x-6.5-\frac{1}{2}x-\frac{1}{2}\left(-\frac{39}{5}\right)
Convert decimal number -7.8 to fraction -\frac{78}{10}. Reduce the fraction -\frac{78}{10} to lowest terms by extracting and canceling out 2.
2.6x-2.6=-6.5x-6.5-\frac{1}{2}x+\frac{-\left(-39\right)}{2\times 5}
Multiply -\frac{1}{2} times -\frac{39}{5} by multiplying numerator times numerator and denominator times denominator.
2.6x-2.6=-6.5x-6.5-\frac{1}{2}x+\frac{39}{10}
Do the multiplications in the fraction \frac{-\left(-39\right)}{2\times 5}.
2.6x-2.6=-7x-6.5+\frac{39}{10}
Combine -6.5x and -\frac{1}{2}x to get -7x.
2.6x-2.6=-7x-\frac{13}{2}+\frac{39}{10}
Convert decimal number -6.5 to fraction -\frac{65}{10}. Reduce the fraction -\frac{65}{10} to lowest terms by extracting and canceling out 5.
2.6x-2.6=-7x-\frac{65}{10}+\frac{39}{10}
Least common multiple of 2 and 10 is 10. Convert -\frac{13}{2} and \frac{39}{10} to fractions with denominator 10.
2.6x-2.6=-7x+\frac{-65+39}{10}
Since -\frac{65}{10} and \frac{39}{10} have the same denominator, add them by adding their numerators.
2.6x-2.6=-7x+\frac{-26}{10}
Add -65 and 39 to get -26.
2.6x-2.6=-7x-\frac{13}{5}
Reduce the fraction \frac{-26}{10} to lowest terms by extracting and canceling out 2.
2.6x-2.6+7x=-\frac{13}{5}
Add 7x to both sides.
9.6x-2.6=-\frac{13}{5}
Combine 2.6x and 7x to get 9.6x.
9.6x=-\frac{13}{5}+2.6
Add 2.6 to both sides.
9.6x=0
Add -\frac{13}{5} and 2.6 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 9.6 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}