Solve for x
x = \frac{10 \sqrt{181} + 50}{13} \approx 14.195095421
x=\frac{50-10\sqrt{181}}{13}\approx -6.502787729
Graph
Share
Copied to clipboard
2.56x^{2}=144+x^{2}-24x\left(-\frac{1}{2}\right)
Multiply 2 and 12 to get 24.
2.56x^{2}=144+x^{2}-\left(-12x\right)
Multiply 24 and -\frac{1}{2} to get -12.
2.56x^{2}=144+x^{2}+12x
The opposite of -12x is 12x.
2.56x^{2}-144=x^{2}+12x
Subtract 144 from both sides.
2.56x^{2}-144-x^{2}=12x
Subtract x^{2} from both sides.
1.56x^{2}-144=12x
Combine 2.56x^{2} and -x^{2} to get 1.56x^{2}.
1.56x^{2}-144-12x=0
Subtract 12x from both sides.
1.56x^{2}-12x-144=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 1.56\left(-144\right)}}{2\times 1.56}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.56 for a, -12 for b, and -144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 1.56\left(-144\right)}}{2\times 1.56}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-6.24\left(-144\right)}}{2\times 1.56}
Multiply -4 times 1.56.
x=\frac{-\left(-12\right)±\sqrt{144+898.56}}{2\times 1.56}
Multiply -6.24 times -144.
x=\frac{-\left(-12\right)±\sqrt{1042.56}}{2\times 1.56}
Add 144 to 898.56.
x=\frac{-\left(-12\right)±\frac{12\sqrt{181}}{5}}{2\times 1.56}
Take the square root of 1042.56.
x=\frac{12±\frac{12\sqrt{181}}{5}}{2\times 1.56}
The opposite of -12 is 12.
x=\frac{12±\frac{12\sqrt{181}}{5}}{3.12}
Multiply 2 times 1.56.
x=\frac{\frac{12\sqrt{181}}{5}+12}{3.12}
Now solve the equation x=\frac{12±\frac{12\sqrt{181}}{5}}{3.12} when ± is plus. Add 12 to \frac{12\sqrt{181}}{5}.
x=\frac{10\sqrt{181}+50}{13}
Divide 12+\frac{12\sqrt{181}}{5} by 3.12 by multiplying 12+\frac{12\sqrt{181}}{5} by the reciprocal of 3.12.
x=\frac{-\frac{12\sqrt{181}}{5}+12}{3.12}
Now solve the equation x=\frac{12±\frac{12\sqrt{181}}{5}}{3.12} when ± is minus. Subtract \frac{12\sqrt{181}}{5} from 12.
x=\frac{50-10\sqrt{181}}{13}
Divide 12-\frac{12\sqrt{181}}{5} by 3.12 by multiplying 12-\frac{12\sqrt{181}}{5} by the reciprocal of 3.12.
x=\frac{10\sqrt{181}+50}{13} x=\frac{50-10\sqrt{181}}{13}
The equation is now solved.
2.56x^{2}=144+x^{2}-24x\left(-\frac{1}{2}\right)
Multiply 2 and 12 to get 24.
2.56x^{2}=144+x^{2}-\left(-12x\right)
Multiply 24 and -\frac{1}{2} to get -12.
2.56x^{2}=144+x^{2}+12x
The opposite of -12x is 12x.
2.56x^{2}-x^{2}=144+12x
Subtract x^{2} from both sides.
1.56x^{2}=144+12x
Combine 2.56x^{2} and -x^{2} to get 1.56x^{2}.
1.56x^{2}-12x=144
Subtract 12x from both sides.
\frac{1.56x^{2}-12x}{1.56}=\frac{144}{1.56}
Divide both sides of the equation by 1.56, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{12}{1.56}\right)x=\frac{144}{1.56}
Dividing by 1.56 undoes the multiplication by 1.56.
x^{2}-\frac{100}{13}x=\frac{144}{1.56}
Divide -12 by 1.56 by multiplying -12 by the reciprocal of 1.56.
x^{2}-\frac{100}{13}x=\frac{1200}{13}
Divide 144 by 1.56 by multiplying 144 by the reciprocal of 1.56.
x^{2}-\frac{100}{13}x+\left(-\frac{50}{13}\right)^{2}=\frac{1200}{13}+\left(-\frac{50}{13}\right)^{2}
Divide -\frac{100}{13}, the coefficient of the x term, by 2 to get -\frac{50}{13}. Then add the square of -\frac{50}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{100}{13}x+\frac{2500}{169}=\frac{1200}{13}+\frac{2500}{169}
Square -\frac{50}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{100}{13}x+\frac{2500}{169}=\frac{18100}{169}
Add \frac{1200}{13} to \frac{2500}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{50}{13}\right)^{2}=\frac{18100}{169}
Factor x^{2}-\frac{100}{13}x+\frac{2500}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{50}{13}\right)^{2}}=\sqrt{\frac{18100}{169}}
Take the square root of both sides of the equation.
x-\frac{50}{13}=\frac{10\sqrt{181}}{13} x-\frac{50}{13}=-\frac{10\sqrt{181}}{13}
Simplify.
x=\frac{10\sqrt{181}+50}{13} x=\frac{50-10\sqrt{181}}{13}
Add \frac{50}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}