2.5(x+40 \% )=11
Solve for x
x=4
Graph
Share
Copied to clipboard
x+\frac{40}{100}=\frac{11}{2.5}
Divide both sides by 2.5.
x+\frac{40}{100}=\frac{110}{25}
Expand \frac{11}{2.5} by multiplying both numerator and the denominator by 10.
x+\frac{40}{100}=\frac{22}{5}
Reduce the fraction \frac{110}{25} to lowest terms by extracting and canceling out 5.
x+\frac{2}{5}=\frac{22}{5}
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
x=\frac{22}{5}-\frac{2}{5}
Subtract \frac{2}{5} from both sides.
x=\frac{22-2}{5}
Since \frac{22}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
x=\frac{20}{5}
Subtract 2 from 22 to get 20.
x=4
Divide 20 by 5 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}