Solve for x
x=-\frac{y}{5}+3
Solve for y
y=15-5x
Graph
Share
Copied to clipboard
2.5x=7.5-0.5y
Subtract 0.5y from both sides.
2.5x=\frac{15-y}{2}
The equation is in standard form.
\frac{2.5x}{2.5}=\frac{15-y}{2\times 2.5}
Divide both sides of the equation by 2.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{15-y}{2\times 2.5}
Dividing by 2.5 undoes the multiplication by 2.5.
x=-\frac{y}{5}+3
Divide \frac{15-y}{2} by 2.5 by multiplying \frac{15-y}{2} by the reciprocal of 2.5.
0.5y=7.5-2.5x
Subtract 2.5x from both sides.
0.5y=\frac{15-5x}{2}
The equation is in standard form.
\frac{0.5y}{0.5}=\frac{15-5x}{0.5\times 2}
Multiply both sides by 2.
y=\frac{15-5x}{0.5\times 2}
Dividing by 0.5 undoes the multiplication by 0.5.
y=15-5x
Divide \frac{15-5x}{2} by 0.5 by multiplying \frac{15-5x}{2} by the reciprocal of 0.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}