Solve for h
h=-\frac{7p}{10}+141.2
Solve for p
p=\frac{1412-10h}{7}
Share
Copied to clipboard
2.5h=353-1.75p
Subtract 1.75p from both sides.
2.5h=-\frac{7p}{4}+353
The equation is in standard form.
\frac{2.5h}{2.5}=\frac{-\frac{7p}{4}+353}{2.5}
Divide both sides of the equation by 2.5, which is the same as multiplying both sides by the reciprocal of the fraction.
h=\frac{-\frac{7p}{4}+353}{2.5}
Dividing by 2.5 undoes the multiplication by 2.5.
h=-\frac{7p}{10}+\frac{706}{5}
Divide 353-\frac{7p}{4} by 2.5 by multiplying 353-\frac{7p}{4} by the reciprocal of 2.5.
1.75p=353-2.5h
Subtract 2.5h from both sides.
1.75p=-\frac{5h}{2}+353
The equation is in standard form.
\frac{1.75p}{1.75}=\frac{-\frac{5h}{2}+353}{1.75}
Divide both sides of the equation by 1.75, which is the same as multiplying both sides by the reciprocal of the fraction.
p=\frac{-\frac{5h}{2}+353}{1.75}
Dividing by 1.75 undoes the multiplication by 1.75.
p=\frac{1412-10h}{7}
Divide 353-\frac{5h}{2} by 1.75 by multiplying 353-\frac{5h}{2} by the reciprocal of 1.75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}