Solve for x
x=-\frac{49y}{82}+\frac{800}{123}
Solve for y
y=-\frac{82x}{49}+\frac{1600}{147}
Graph
Share
Copied to clipboard
2.46x=16-1.47y
Subtract 1.47y from both sides.
2.46x=-\frac{147y}{100}+16
The equation is in standard form.
\frac{2.46x}{2.46}=\frac{-\frac{147y}{100}+16}{2.46}
Divide both sides of the equation by 2.46, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{147y}{100}+16}{2.46}
Dividing by 2.46 undoes the multiplication by 2.46.
x=-\frac{49y}{82}+\frac{800}{123}
Divide 16-\frac{147y}{100} by 2.46 by multiplying 16-\frac{147y}{100} by the reciprocal of 2.46.
1.47y=16-2.46x
Subtract 2.46x from both sides.
1.47y=-\frac{123x}{50}+16
The equation is in standard form.
\frac{1.47y}{1.47}=\frac{-\frac{123x}{50}+16}{1.47}
Divide both sides of the equation by 1.47, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{123x}{50}+16}{1.47}
Dividing by 1.47 undoes the multiplication by 1.47.
y=-\frac{82x}{49}+\frac{1600}{147}
Divide 16-\frac{123x}{50} by 1.47 by multiplying 16-\frac{123x}{50} by the reciprocal of 1.47.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}