Solve for m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&t\neq 0\text{ and }|s|=\frac{\sqrt{874}|t|}{46}\text{ and }s\neq 0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}\\s\neq 0\text{, }&\text{unconditionally}\\s=\frac{\sqrt{874}t}{46}\text{; }s=-\frac{\sqrt{874}t}{46}\text{, }&t\neq 0\end{matrix}\right.
Share
Copied to clipboard
2.07m\times 2s^{2}=\frac{1}{2}\times 1.71\times 2mt^{2}
Multiply both sides of the equation by 2s^{2}, the least common multiple of 2,s^{2}.
4.14ms^{2}=\frac{1}{2}\times 1.71\times 2mt^{2}
Multiply 2.07 and 2 to get 4.14.
4.14ms^{2}=\frac{171}{200}\times 2mt^{2}
Multiply \frac{1}{2} and 1.71 to get \frac{171}{200}.
4.14ms^{2}=\frac{171}{100}mt^{2}
Multiply \frac{171}{200} and 2 to get \frac{171}{100}.
4.14ms^{2}-\frac{171}{100}mt^{2}=0
Subtract \frac{171}{100}mt^{2} from both sides.
\left(4.14s^{2}-\frac{171}{100}t^{2}\right)m=0
Combine all terms containing m.
\left(\frac{207s^{2}}{50}-\frac{171t^{2}}{100}\right)m=0
The equation is in standard form.
m=0
Divide 0 by 4.14s^{2}-\frac{171}{100}t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}