Solve for x
x=\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}\approx 0.252715711
x=-\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}\approx -0.252649897
Graph
Share
Copied to clipboard
9663.1925\times 695x^{2}-13\times 34x=428802
Multiply both sides of the equation by 4745, the least common multiple of 365,65.
6715918.7875x^{2}-13\times 34x=428802
Multiply 9663.1925 and 695 to get 6715918.7875.
6715918.7875x^{2}-442x=428802
Multiply -13 and 34 to get -442.
6715918.7875x^{2}-442x-428802=0
Subtract 428802 from both sides.
x=\frac{-\left(-442\right)±\sqrt{\left(-442\right)^{2}-4\times 6715918.7875\left(-428802\right)}}{2\times 6715918.7875}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6715918.7875 for a, -442 for b, and -428802 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-442\right)±\sqrt{195364-4\times 6715918.7875\left(-428802\right)}}{2\times 6715918.7875}
Square -442.
x=\frac{-\left(-442\right)±\sqrt{195364-26863675.15\left(-428802\right)}}{2\times 6715918.7875}
Multiply -4 times 6715918.7875.
x=\frac{-\left(-442\right)±\sqrt{195364+11519197631670.3}}{2\times 6715918.7875}
Multiply -26863675.15 times -428802.
x=\frac{-\left(-442\right)±\sqrt{11519197827034.3}}{2\times 6715918.7875}
Add 195364 to 11519197631670.3.
x=\frac{-\left(-442\right)±\frac{\sqrt{1151919782703430}}{10}}{2\times 6715918.7875}
Take the square root of 11519197827034.3.
x=\frac{442±\frac{\sqrt{1151919782703430}}{10}}{2\times 6715918.7875}
The opposite of -442 is 442.
x=\frac{442±\frac{\sqrt{1151919782703430}}{10}}{13431837.575}
Multiply 2 times 6715918.7875.
x=\frac{\frac{\sqrt{1151919782703430}}{10}+442}{13431837.575}
Now solve the equation x=\frac{442±\frac{\sqrt{1151919782703430}}{10}}{13431837.575} when ± is plus. Add 442 to \frac{\sqrt{1151919782703430}}{10}.
x=\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}
Divide 442+\frac{\sqrt{1151919782703430}}{10} by 13431837.575 by multiplying 442+\frac{\sqrt{1151919782703430}}{10} by the reciprocal of 13431837.575.
x=\frac{-\frac{\sqrt{1151919782703430}}{10}+442}{13431837.575}
Now solve the equation x=\frac{442±\frac{\sqrt{1151919782703430}}{10}}{13431837.575} when ± is minus. Subtract \frac{\sqrt{1151919782703430}}{10} from 442.
x=-\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}
Divide 442-\frac{\sqrt{1151919782703430}}{10} by 13431837.575 by multiplying 442-\frac{\sqrt{1151919782703430}}{10} by the reciprocal of 13431837.575.
x=\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731} x=-\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}
The equation is now solved.
9663.1925\times 695x^{2}-13\times 34x=428802
Multiply both sides of the equation by 4745, the least common multiple of 365,65.
6715918.7875x^{2}-13\times 34x=428802
Multiply 9663.1925 and 695 to get 6715918.7875.
6715918.7875x^{2}-442x=428802
Multiply -13 and 34 to get -442.
\frac{6715918.7875x^{2}-442x}{6715918.7875}=\frac{428802}{6715918.7875}
Divide both sides of the equation by 6715918.7875, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{442}{6715918.7875}\right)x=\frac{428802}{6715918.7875}
Dividing by 6715918.7875 undoes the multiplication by 6715918.7875.
x^{2}-\frac{2720}{41328731}x=\frac{428802}{6715918.7875}
Divide -442 by 6715918.7875 by multiplying -442 by the reciprocal of 6715918.7875.
x^{2}-\frac{2720}{41328731}x=\frac{469920}{7359911}
Divide 428802 by 6715918.7875 by multiplying 428802 by the reciprocal of 6715918.7875.
x^{2}-\frac{2720}{41328731}x+\left(-\frac{1360}{41328731}\right)^{2}=\frac{469920}{7359911}+\left(-\frac{1360}{41328731}\right)^{2}
Divide -\frac{2720}{41328731}, the coefficient of the x term, by 2 to get -\frac{1360}{41328731}. Then add the square of -\frac{1360}{41328731} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2720}{41328731}x+\frac{1849600}{1708064006070361}=\frac{469920}{7359911}+\frac{1849600}{1708064006070361}
Square -\frac{1360}{41328731} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2720}{41328731}x+\frac{1849600}{1708064006070361}=\frac{1417747424865760}{22204832078914693}
Add \frac{469920}{7359911} to \frac{1849600}{1708064006070361} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1360}{41328731}\right)^{2}=\frac{1417747424865760}{22204832078914693}
Factor x^{2}-\frac{2720}{41328731}x+\frac{1849600}{1708064006070361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1360}{41328731}\right)^{2}}=\sqrt{\frac{1417747424865760}{22204832078914693}}
Take the square root of both sides of the equation.
x-\frac{1360}{41328731}=\frac{4\sqrt{1151919782703430}}{537273503} x-\frac{1360}{41328731}=-\frac{4\sqrt{1151919782703430}}{537273503}
Simplify.
x=\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731} x=-\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}
Add \frac{1360}{41328731} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}