Solve for x
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
Graph
Share
Copied to clipboard
2-x=\frac{1}{5+2}\left(7-x\right)
Subtract 3 from 4 to get 1.
2-x=\frac{1}{7}\left(7-x\right)
Add 5 and 2 to get 7.
2-x=\frac{1}{7}\times 7+\frac{1}{7}\left(-1\right)x
Use the distributive property to multiply \frac{1}{7} by 7-x.
2-x=1+\frac{1}{7}\left(-1\right)x
Cancel out 7 and 7.
2-x=1-\frac{1}{7}x
Multiply \frac{1}{7} and -1 to get -\frac{1}{7}.
2-x+\frac{1}{7}x=1
Add \frac{1}{7}x to both sides.
2-\frac{6}{7}x=1
Combine -x and \frac{1}{7}x to get -\frac{6}{7}x.
-\frac{6}{7}x=1-2
Subtract 2 from both sides.
-\frac{6}{7}x=-1
Subtract 2 from 1 to get -1.
x=-\left(-\frac{7}{6}\right)
Multiply both sides by -\frac{7}{6}, the reciprocal of -\frac{6}{7}.
x=\frac{7}{6}
Multiply -1 and -\frac{7}{6} to get \frac{7}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}