Verify
false
Share
Copied to clipboard
2-\frac{5}{-21}=2
Multiply 3 and -7 to get -21.
2-\left(-\frac{5}{21}\right)=2
Fraction \frac{5}{-21} can be rewritten as -\frac{5}{21} by extracting the negative sign.
2+\frac{5}{21}=2
The opposite of -\frac{5}{21} is \frac{5}{21}.
\frac{42}{21}+\frac{5}{21}=2
Convert 2 to fraction \frac{42}{21}.
\frac{42+5}{21}=2
Since \frac{42}{21} and \frac{5}{21} have the same denominator, add them by adding their numerators.
\frac{47}{21}=2
Add 42 and 5 to get 47.
\frac{47}{21}=\frac{42}{21}
Convert 2 to fraction \frac{42}{21}.
\text{false}
Compare \frac{47}{21} and \frac{42}{21}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}