Evaluate
-\frac{5\sqrt{2}}{4}+\frac{5}{2}\approx 0.732233047
Factor
\frac{5 \sqrt{2} {(\sqrt{2} - 1)}}{4} = 0.7322330470336313
Share
Copied to clipboard
2-\frac{3+2-\sqrt{2}}{2\sqrt{2}}
Calculate the square root of 4 and get 2.
2-\frac{5-\sqrt{2}}{2\sqrt{2}}
Add 3 and 2 to get 5.
2-\frac{\left(5-\sqrt{2}\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{5-\sqrt{2}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2-\frac{\left(5-\sqrt{2}\right)\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
2-\frac{\left(5-\sqrt{2}\right)\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
\frac{2\times 4}{4}-\frac{\left(5-\sqrt{2}\right)\sqrt{2}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{4}{4}.
\frac{2\times 4-\left(5-\sqrt{2}\right)\sqrt{2}}{4}
Since \frac{2\times 4}{4} and \frac{\left(5-\sqrt{2}\right)\sqrt{2}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{8-5\sqrt{2}+2}{4}
Do the multiplications in 2\times 4-\left(5-\sqrt{2}\right)\sqrt{2}.
\frac{10-5\sqrt{2}}{4}
Do the calculations in 8-5\sqrt{2}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}