Solve for x
\left\{\begin{matrix}\\x=3\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=\frac{7}{2}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=\frac{7}{2}\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=3\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(2x-6\right)\left(y-3\right)+3=x
Use the distributive property to multiply 2 by x-3.
2xy-6x-6y+18+3=x
Use the distributive property to multiply 2x-6 by y-3.
2xy-6x-6y+21=x
Add 18 and 3 to get 21.
2xy-6x-6y+21-x=0
Subtract x from both sides.
2xy-7x-6y+21=0
Combine -6x and -x to get -7x.
2xy-7x+21=6y
Add 6y to both sides. Anything plus zero gives itself.
2xy-7x=6y-21
Subtract 21 from both sides.
\left(2y-7\right)x=6y-21
Combine all terms containing x.
\frac{\left(2y-7\right)x}{2y-7}=\frac{6y-21}{2y-7}
Divide both sides by -7+2y.
x=\frac{6y-21}{2y-7}
Dividing by -7+2y undoes the multiplication by -7+2y.
x=3
Divide 6y-21 by -7+2y.
\left(2x-6\right)\left(y-3\right)+3=x
Use the distributive property to multiply 2 by x-3.
2xy-6x-6y+18+3=x
Use the distributive property to multiply 2x-6 by y-3.
2xy-6x-6y+21=x
Add 18 and 3 to get 21.
2xy-6y+21=x+6x
Add 6x to both sides.
2xy-6y+21=7x
Combine x and 6x to get 7x.
2xy-6y=7x-21
Subtract 21 from both sides.
\left(2x-6\right)y=7x-21
Combine all terms containing y.
\frac{\left(2x-6\right)y}{2x-6}=\frac{7x-21}{2x-6}
Divide both sides by 2x-6.
y=\frac{7x-21}{2x-6}
Dividing by 2x-6 undoes the multiplication by 2x-6.
y=\frac{7}{2}
Divide -21+7x by 2x-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}