2(x-150)=5(3y+50
Solve for x
x=\frac{15y}{2}+275
Solve for y
y=\frac{2\left(x-275\right)}{15}
Graph
Share
Copied to clipboard
2x-300=5\left(3y+50\right)
Use the distributive property to multiply 2 by x-150.
2x-300=15y+250
Use the distributive property to multiply 5 by 3y+50.
2x=15y+250+300
Add 300 to both sides.
2x=15y+550
Add 250 and 300 to get 550.
\frac{2x}{2}=\frac{15y+550}{2}
Divide both sides by 2.
x=\frac{15y+550}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{15y}{2}+275
Divide 15y+550 by 2.
2x-300=5\left(3y+50\right)
Use the distributive property to multiply 2 by x-150.
2x-300=15y+250
Use the distributive property to multiply 5 by 3y+50.
15y+250=2x-300
Swap sides so that all variable terms are on the left hand side.
15y=2x-300-250
Subtract 250 from both sides.
15y=2x-550
Subtract 250 from -300 to get -550.
\frac{15y}{15}=\frac{2x-550}{15}
Divide both sides by 15.
y=\frac{2x-550}{15}
Dividing by 15 undoes the multiplication by 15.
y=\frac{2x}{15}-\frac{110}{3}
Divide -550+2x by 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}