Solve for x
x=-0.35
Graph
Share
Copied to clipboard
2x+2\left(-\frac{3}{10}\right)+0.3=-1
Use the distributive property to multiply 2 by x-\frac{3}{10}.
2x+\frac{2\left(-3\right)}{10}+0.3=-1
Express 2\left(-\frac{3}{10}\right) as a single fraction.
2x+\frac{-6}{10}+0.3=-1
Multiply 2 and -3 to get -6.
2x-\frac{3}{5}+0.3=-1
Reduce the fraction \frac{-6}{10} to lowest terms by extracting and canceling out 2.
2x-\frac{3}{5}+\frac{3}{10}=-1
Convert decimal number 0.3 to fraction \frac{3}{10}.
2x-\frac{6}{10}+\frac{3}{10}=-1
Least common multiple of 5 and 10 is 10. Convert -\frac{3}{5} and \frac{3}{10} to fractions with denominator 10.
2x+\frac{-6+3}{10}=-1
Since -\frac{6}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
2x-\frac{3}{10}=-1
Add -6 and 3 to get -3.
2x=-1+\frac{3}{10}
Add \frac{3}{10} to both sides.
2x=-\frac{10}{10}+\frac{3}{10}
Convert -1 to fraction -\frac{10}{10}.
2x=\frac{-10+3}{10}
Since -\frac{10}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
2x=-\frac{7}{10}
Add -10 and 3 to get -7.
x=\frac{-\frac{7}{10}}{2}
Divide both sides by 2.
x=\frac{-7}{10\times 2}
Express \frac{-\frac{7}{10}}{2} as a single fraction.
x=\frac{-7}{20}
Multiply 10 and 2 to get 20.
x=-\frac{7}{20}
Fraction \frac{-7}{20} can be rewritten as -\frac{7}{20} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}