Solve for y
y = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
Graph
Share
Copied to clipboard
2\left(-\frac{13}{3}\right)-4y=-26
Reduce the fraction \frac{26}{6} to lowest terms by extracting and canceling out 2.
\frac{2\left(-13\right)}{3}-4y=-26
Express 2\left(-\frac{13}{3}\right) as a single fraction.
\frac{-26}{3}-4y=-26
Multiply 2 and -13 to get -26.
-\frac{26}{3}-4y=-26
Fraction \frac{-26}{3} can be rewritten as -\frac{26}{3} by extracting the negative sign.
-4y=-26+\frac{26}{3}
Add \frac{26}{3} to both sides.
-4y=-\frac{78}{3}+\frac{26}{3}
Convert -26 to fraction -\frac{78}{3}.
-4y=\frac{-78+26}{3}
Since -\frac{78}{3} and \frac{26}{3} have the same denominator, add them by adding their numerators.
-4y=-\frac{52}{3}
Add -78 and 26 to get -52.
y=\frac{-\frac{52}{3}}{-4}
Divide both sides by -4.
y=\frac{-52}{3\left(-4\right)}
Express \frac{-\frac{52}{3}}{-4} as a single fraction.
y=\frac{-52}{-12}
Multiply 3 and -4 to get -12.
y=\frac{13}{3}
Reduce the fraction \frac{-52}{-12} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}