Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{8}{3}x^{2}=14\times 54-23-5^{2}
Multiply 2 and \frac{4}{3} to get \frac{8}{3}.
\frac{8}{3}x^{2}=756-23-5^{2}
Multiply 14 and 54 to get 756.
\frac{8}{3}x^{2}=733-5^{2}
Subtract 23 from 756 to get 733.
\frac{8}{3}x^{2}=733-25
Calculate 5 to the power of 2 and get 25.
\frac{8}{3}x^{2}=708
Subtract 25 from 733 to get 708.
x^{2}=708\times \frac{3}{8}
Multiply both sides by \frac{3}{8}, the reciprocal of \frac{8}{3}.
x^{2}=\frac{531}{2}
Multiply 708 and \frac{3}{8} to get \frac{531}{2}.
x=\frac{3\sqrt{118}}{2} x=-\frac{3\sqrt{118}}{2}
Take the square root of both sides of the equation.
\frac{8}{3}x^{2}=14\times 54-23-5^{2}
Multiply 2 and \frac{4}{3} to get \frac{8}{3}.
\frac{8}{3}x^{2}=756-23-5^{2}
Multiply 14 and 54 to get 756.
\frac{8}{3}x^{2}=733-5^{2}
Subtract 23 from 756 to get 733.
\frac{8}{3}x^{2}=733-25
Calculate 5 to the power of 2 and get 25.
\frac{8}{3}x^{2}=708
Subtract 25 from 733 to get 708.
\frac{8}{3}x^{2}-708=0
Subtract 708 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{8}{3}\left(-708\right)}}{2\times \frac{8}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{8}{3} for a, 0 for b, and -708 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{8}{3}\left(-708\right)}}{2\times \frac{8}{3}}
Square 0.
x=\frac{0±\sqrt{-\frac{32}{3}\left(-708\right)}}{2\times \frac{8}{3}}
Multiply -4 times \frac{8}{3}.
x=\frac{0±\sqrt{7552}}{2\times \frac{8}{3}}
Multiply -\frac{32}{3} times -708.
x=\frac{0±8\sqrt{118}}{2\times \frac{8}{3}}
Take the square root of 7552.
x=\frac{0±8\sqrt{118}}{\frac{16}{3}}
Multiply 2 times \frac{8}{3}.
x=\frac{3\sqrt{118}}{2}
Now solve the equation x=\frac{0±8\sqrt{118}}{\frac{16}{3}} when ± is plus.
x=-\frac{3\sqrt{118}}{2}
Now solve the equation x=\frac{0±8\sqrt{118}}{\frac{16}{3}} when ± is minus.
x=\frac{3\sqrt{118}}{2} x=-\frac{3\sqrt{118}}{2}
The equation is now solved.