Evaluate
\frac{16}{3}\approx 5.333333333
Factor
\frac{2 ^ {4}}{3} = 5\frac{1}{3} = 5.333333333333333
Share
Copied to clipboard
\frac{2\times 3}{4}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Express 2\times \frac{3}{4} as a single fraction.
\frac{6}{4}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Multiply 2 and 3 to get 6.
\frac{3}{2}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{12}{8}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Least common multiple of 2 and 8 is 8. Convert \frac{3}{2} and \frac{13}{8} to fractions with denominator 8.
\frac{12+13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Since \frac{12}{8} and \frac{13}{8} have the same denominator, add them by adding their numerators.
\frac{25}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Add 12 and 13 to get 25.
\frac{125}{40}+\frac{92}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
Least common multiple of 8 and 10 is 40. Convert \frac{25}{8} and \frac{23}{10} to fractions with denominator 40.
\frac{125+92}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
Since \frac{125}{40} and \frac{92}{40} have the same denominator, add them by adding their numerators.
\frac{217}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
Add 125 and 92 to get 217.
\frac{217}{40}-\frac{3\times 5}{24}+1\times \frac{8}{15}
Express 3\times \frac{5}{24} as a single fraction.
\frac{217}{40}-\frac{15}{24}+1\times \frac{8}{15}
Multiply 3 and 5 to get 15.
\frac{217}{40}-\frac{5}{8}+1\times \frac{8}{15}
Reduce the fraction \frac{15}{24} to lowest terms by extracting and canceling out 3.
\frac{217}{40}-\frac{25}{40}+1\times \frac{8}{15}
Least common multiple of 40 and 8 is 40. Convert \frac{217}{40} and \frac{5}{8} to fractions with denominator 40.
\frac{217-25}{40}+1\times \frac{8}{15}
Since \frac{217}{40} and \frac{25}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{192}{40}+1\times \frac{8}{15}
Subtract 25 from 217 to get 192.
\frac{24}{5}+1\times \frac{8}{15}
Reduce the fraction \frac{192}{40} to lowest terms by extracting and canceling out 8.
\frac{24}{5}+\frac{8}{15}
Multiply 1 and \frac{8}{15} to get \frac{8}{15}.
\frac{72}{15}+\frac{8}{15}
Least common multiple of 5 and 15 is 15. Convert \frac{24}{5} and \frac{8}{15} to fractions with denominator 15.
\frac{72+8}{15}
Since \frac{72}{15} and \frac{8}{15} have the same denominator, add them by adding their numerators.
\frac{80}{15}
Add 72 and 8 to get 80.
\frac{16}{3}
Reduce the fraction \frac{80}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}