Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{3x-2}=5x-6-2
Subtract 2 from both sides of the equation.
\sqrt{3x-2}=5x-8
Subtract 2 from -6 to get -8.
\left(\sqrt{3x-2}\right)^{2}=\left(5x-8\right)^{2}
Square both sides of the equation.
3x-2=\left(5x-8\right)^{2}
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
3x-2=25x^{2}-80x+64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-8\right)^{2}.
3x-2-25x^{2}=-80x+64
Subtract 25x^{2} from both sides.
3x-2-25x^{2}+80x=64
Add 80x to both sides.
83x-2-25x^{2}=64
Combine 3x and 80x to get 83x.
83x-2-25x^{2}-64=0
Subtract 64 from both sides.
83x-66-25x^{2}=0
Subtract 64 from -2 to get -66.
-25x^{2}+83x-66=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-83±\sqrt{83^{2}-4\left(-25\right)\left(-66\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 83 for b, and -66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-83±\sqrt{6889-4\left(-25\right)\left(-66\right)}}{2\left(-25\right)}
Square 83.
x=\frac{-83±\sqrt{6889+100\left(-66\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-83±\sqrt{6889-6600}}{2\left(-25\right)}
Multiply 100 times -66.
x=\frac{-83±\sqrt{289}}{2\left(-25\right)}
Add 6889 to -6600.
x=\frac{-83±17}{2\left(-25\right)}
Take the square root of 289.
x=\frac{-83±17}{-50}
Multiply 2 times -25.
x=-\frac{66}{-50}
Now solve the equation x=\frac{-83±17}{-50} when ± is plus. Add -83 to 17.
x=\frac{33}{25}
Reduce the fraction \frac{-66}{-50} to lowest terms by extracting and canceling out 2.
x=-\frac{100}{-50}
Now solve the equation x=\frac{-83±17}{-50} when ± is minus. Subtract 17 from -83.
x=2
Divide -100 by -50.
x=\frac{33}{25} x=2
The equation is now solved.
2+\sqrt{3\times \frac{33}{25}-2}=5\times \frac{33}{25}-6
Substitute \frac{33}{25} for x in the equation 2+\sqrt{3x-2}=5x-6.
\frac{17}{5}=\frac{3}{5}
Simplify. The value x=\frac{33}{25} does not satisfy the equation.
2+\sqrt{3\times 2-2}=5\times 2-6
Substitute 2 for x in the equation 2+\sqrt{3x-2}=5x-6.
4=4
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{3x-2}=5x-8 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}