Evaluate
\frac{12}{5}=2.4
Factor
\frac{2 ^ {2} \cdot 3}{5} = 2\frac{2}{5} = 2.4
Share
Copied to clipboard
\frac{4}{2}+\frac{3}{2}-\frac{1}{5}+9\left(-\frac{1}{10}\right)
Convert 2 to fraction \frac{4}{2}.
\frac{4+3}{2}-\frac{1}{5}+9\left(-\frac{1}{10}\right)
Since \frac{4}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{7}{2}-\frac{1}{5}+9\left(-\frac{1}{10}\right)
Add 4 and 3 to get 7.
\frac{35}{10}-\frac{2}{10}+9\left(-\frac{1}{10}\right)
Least common multiple of 2 and 5 is 10. Convert \frac{7}{2} and \frac{1}{5} to fractions with denominator 10.
\frac{35-2}{10}+9\left(-\frac{1}{10}\right)
Since \frac{35}{10} and \frac{2}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{10}+9\left(-\frac{1}{10}\right)
Subtract 2 from 35 to get 33.
\frac{33}{10}+\frac{9\left(-1\right)}{10}
Express 9\left(-\frac{1}{10}\right) as a single fraction.
\frac{33}{10}+\frac{-9}{10}
Multiply 9 and -1 to get -9.
\frac{33}{10}-\frac{9}{10}
Fraction \frac{-9}{10} can be rewritten as -\frac{9}{10} by extracting the negative sign.
\frac{33-9}{10}
Since \frac{33}{10} and \frac{9}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{24}{10}
Subtract 9 from 33 to get 24.
\frac{12}{5}
Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}