Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

2z^{2}-3=-5z
Subtract 3 from both sides.
2z^{2}-3+5z=0
Add 5z to both sides.
2z^{2}+5z-3=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=5 ab=2\left(-3\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2z^{2}+az+bz-3. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=-1 b=6
The solution is the pair that gives sum 5.
\left(2z^{2}-z\right)+\left(6z-3\right)
Rewrite 2z^{2}+5z-3 as \left(2z^{2}-z\right)+\left(6z-3\right).
z\left(2z-1\right)+3\left(2z-1\right)
Factor out z in the first and 3 in the second group.
\left(2z-1\right)\left(z+3\right)
Factor out common term 2z-1 by using distributive property.
z=\frac{1}{2} z=-3
To find equation solutions, solve 2z-1=0 and z+3=0.
2z^{2}-3=-5z
Subtract 3 from both sides.
2z^{2}-3+5z=0
Add 5z to both sides.
2z^{2}+5z-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-5±\sqrt{5^{2}-4\times 2\left(-3\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-5±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Square 5.
z=\frac{-5±\sqrt{25-8\left(-3\right)}}{2\times 2}
Multiply -4 times 2.
z=\frac{-5±\sqrt{25+24}}{2\times 2}
Multiply -8 times -3.
z=\frac{-5±\sqrt{49}}{2\times 2}
Add 25 to 24.
z=\frac{-5±7}{2\times 2}
Take the square root of 49.
z=\frac{-5±7}{4}
Multiply 2 times 2.
z=\frac{2}{4}
Now solve the equation z=\frac{-5±7}{4} when ± is plus. Add -5 to 7.
z=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
z=-\frac{12}{4}
Now solve the equation z=\frac{-5±7}{4} when ± is minus. Subtract 7 from -5.
z=-3
Divide -12 by 4.
z=\frac{1}{2} z=-3
The equation is now solved.
2z^{2}+5z=3
Add 5z to both sides.
\frac{2z^{2}+5z}{2}=\frac{3}{2}
Divide both sides by 2.
z^{2}+\frac{5}{2}z=\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
z^{2}+\frac{5}{2}z+\left(\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+\frac{5}{2}z+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
z^{2}+\frac{5}{2}z+\frac{25}{16}=\frac{49}{16}
Add \frac{3}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z+\frac{5}{4}\right)^{2}=\frac{49}{16}
Factor z^{2}+\frac{5}{2}z+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
z+\frac{5}{4}=\frac{7}{4} z+\frac{5}{4}=-\frac{7}{4}
Simplify.
z=\frac{1}{2} z=-3
Subtract \frac{5}{4} from both sides of the equation.