Solve for x
x=\frac{6\left(y_{1}-100\right)}{725}
Solve for y_1
y_{1}=\frac{725x}{6}+100
Graph
Share
Copied to clipboard
120y_{1}=120x\times 120+5\times 20x+12000
Multiply both sides of the equation by 60.
120y_{1}=14400x+5\times 20x+12000
Multiply 120 and 120 to get 14400.
120y_{1}=14400x+100x+12000
Multiply 5 and 20 to get 100.
120y_{1}=14500x+12000
Combine 14400x and 100x to get 14500x.
14500x+12000=120y_{1}
Swap sides so that all variable terms are on the left hand side.
14500x=120y_{1}-12000
Subtract 12000 from both sides.
\frac{14500x}{14500}=\frac{120y_{1}-12000}{14500}
Divide both sides by 14500.
x=\frac{120y_{1}-12000}{14500}
Dividing by 14500 undoes the multiplication by 14500.
x=\frac{6y_{1}}{725}-\frac{24}{29}
Divide -12000+120y_{1} by 14500.
120y_{1}=120x\times 120+5\times 20x+12000
Multiply both sides of the equation by 60.
120y_{1}=14400x+5\times 20x+12000
Multiply 120 and 120 to get 14400.
120y_{1}=14400x+100x+12000
Multiply 5 and 20 to get 100.
120y_{1}=14500x+12000
Combine 14400x and 100x to get 14500x.
\frac{120y_{1}}{120}=\frac{14500x+12000}{120}
Divide both sides by 120.
y_{1}=\frac{14500x+12000}{120}
Dividing by 120 undoes the multiplication by 120.
y_{1}=\frac{725x}{6}+100
Divide 14500x+12000 by 120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}