Solve for x
x=1-2y
Solve for y
y=\frac{1-x}{2}
Graph
Share
Copied to clipboard
2y-3=-x-2
To find the opposite of x+2, find the opposite of each term.
-x-2=2y-3
Swap sides so that all variable terms are on the left hand side.
-x=2y-3+2
Add 2 to both sides.
-x=2y-1
Add -3 and 2 to get -1.
\frac{-x}{-1}=\frac{2y-1}{-1}
Divide both sides by -1.
x=\frac{2y-1}{-1}
Dividing by -1 undoes the multiplication by -1.
x=1-2y
Divide 2y-1 by -1.
2y-3=-x-2
To find the opposite of x+2, find the opposite of each term.
2y=-x-2+3
Add 3 to both sides.
2y=-x+1
Add -2 and 3 to get 1.
2y=1-x
The equation is in standard form.
\frac{2y}{2}=\frac{1-x}{2}
Divide both sides by 2.
y=\frac{1-x}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}