Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6y^{2}-2y+7y=1
Use the distributive property to multiply 2y by 3y-1.
6y^{2}+5y=1
Combine -2y and 7y to get 5y.
6y^{2}+5y-1=0
Subtract 1 from both sides.
y=\frac{-5±\sqrt{5^{2}-4\times 6\left(-1\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 5 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\times 6\left(-1\right)}}{2\times 6}
Square 5.
y=\frac{-5±\sqrt{25-24\left(-1\right)}}{2\times 6}
Multiply -4 times 6.
y=\frac{-5±\sqrt{25+24}}{2\times 6}
Multiply -24 times -1.
y=\frac{-5±\sqrt{49}}{2\times 6}
Add 25 to 24.
y=\frac{-5±7}{2\times 6}
Take the square root of 49.
y=\frac{-5±7}{12}
Multiply 2 times 6.
y=\frac{2}{12}
Now solve the equation y=\frac{-5±7}{12} when ± is plus. Add -5 to 7.
y=\frac{1}{6}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
y=-\frac{12}{12}
Now solve the equation y=\frac{-5±7}{12} when ± is minus. Subtract 7 from -5.
y=-1
Divide -12 by 12.
y=\frac{1}{6} y=-1
The equation is now solved.
6y^{2}-2y+7y=1
Use the distributive property to multiply 2y by 3y-1.
6y^{2}+5y=1
Combine -2y and 7y to get 5y.
\frac{6y^{2}+5y}{6}=\frac{1}{6}
Divide both sides by 6.
y^{2}+\frac{5}{6}y=\frac{1}{6}
Dividing by 6 undoes the multiplication by 6.
y^{2}+\frac{5}{6}y+\left(\frac{5}{12}\right)^{2}=\frac{1}{6}+\left(\frac{5}{12}\right)^{2}
Divide \frac{5}{6}, the coefficient of the x term, by 2 to get \frac{5}{12}. Then add the square of \frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{5}{6}y+\frac{25}{144}=\frac{1}{6}+\frac{25}{144}
Square \frac{5}{12} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{5}{6}y+\frac{25}{144}=\frac{49}{144}
Add \frac{1}{6} to \frac{25}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{5}{12}\right)^{2}=\frac{49}{144}
Factor y^{2}+\frac{5}{6}y+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{5}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Take the square root of both sides of the equation.
y+\frac{5}{12}=\frac{7}{12} y+\frac{5}{12}=-\frac{7}{12}
Simplify.
y=\frac{1}{6} y=-1
Subtract \frac{5}{12} from both sides of the equation.