Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2y^{2}+y=1
Combine -4y and 5y to get y.
2y^{2}+y-1=0
Subtract 1 from both sides.
a+b=1 ab=2\left(-1\right)=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2y^{2}+ay+by-1. To find a and b, set up a system to be solved.
a=-1 b=2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(2y^{2}-y\right)+\left(2y-1\right)
Rewrite 2y^{2}+y-1 as \left(2y^{2}-y\right)+\left(2y-1\right).
y\left(2y-1\right)+2y-1
Factor out y in 2y^{2}-y.
\left(2y-1\right)\left(y+1\right)
Factor out common term 2y-1 by using distributive property.
y=\frac{1}{2} y=-1
To find equation solutions, solve 2y-1=0 and y+1=0.
2y^{2}+y=1
Combine -4y and 5y to get y.
2y^{2}+y-1=0
Subtract 1 from both sides.
y=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
Square 1.
y=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-1±\sqrt{1+8}}{2\times 2}
Multiply -8 times -1.
y=\frac{-1±\sqrt{9}}{2\times 2}
Add 1 to 8.
y=\frac{-1±3}{2\times 2}
Take the square root of 9.
y=\frac{-1±3}{4}
Multiply 2 times 2.
y=\frac{2}{4}
Now solve the equation y=\frac{-1±3}{4} when ± is plus. Add -1 to 3.
y=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
y=-\frac{4}{4}
Now solve the equation y=\frac{-1±3}{4} when ± is minus. Subtract 3 from -1.
y=-1
Divide -4 by 4.
y=\frac{1}{2} y=-1
The equation is now solved.
2y^{2}+y=1
Combine -4y and 5y to get y.
\frac{2y^{2}+y}{2}=\frac{1}{2}
Divide both sides by 2.
y^{2}+\frac{1}{2}y=\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}+\frac{1}{2}y+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{1}{2}y+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{1}{2}y+\frac{1}{16}=\frac{9}{16}
Add \frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{1}{4}\right)^{2}=\frac{9}{16}
Factor y^{2}+\frac{1}{2}y+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
y+\frac{1}{4}=\frac{3}{4} y+\frac{1}{4}=-\frac{3}{4}
Simplify.
y=\frac{1}{2} y=-1
Subtract \frac{1}{4} from both sides of the equation.