Solve for y
y = \frac{\sqrt{209} + 1}{10} \approx 1.545683229
y=\frac{1-\sqrt{209}}{10}\approx -1.345683229
Graph
Share
Copied to clipboard
2y^{2}+\frac{1}{5}-y=3\left(\frac{1}{25}-\frac{2}{5}y+y^{2}\right)-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{5}-y\right)^{2}.
2y^{2}+\frac{1}{5}-y=\frac{3}{25}-\frac{6}{5}y+3y^{2}-2
Use the distributive property to multiply 3 by \frac{1}{25}-\frac{2}{5}y+y^{2}.
2y^{2}+\frac{1}{5}-y=-\frac{47}{25}-\frac{6}{5}y+3y^{2}
Subtract 2 from \frac{3}{25} to get -\frac{47}{25}.
2y^{2}+\frac{1}{5}-y-\left(-\frac{47}{25}\right)=-\frac{6}{5}y+3y^{2}
Subtract -\frac{47}{25} from both sides.
2y^{2}+\frac{1}{5}-y+\frac{47}{25}=-\frac{6}{5}y+3y^{2}
The opposite of -\frac{47}{25} is \frac{47}{25}.
2y^{2}+\frac{1}{5}-y+\frac{47}{25}+\frac{6}{5}y=3y^{2}
Add \frac{6}{5}y to both sides.
2y^{2}+\frac{52}{25}-y+\frac{6}{5}y=3y^{2}
Add \frac{1}{5} and \frac{47}{25} to get \frac{52}{25}.
2y^{2}+\frac{52}{25}+\frac{1}{5}y=3y^{2}
Combine -y and \frac{6}{5}y to get \frac{1}{5}y.
2y^{2}+\frac{52}{25}+\frac{1}{5}y-3y^{2}=0
Subtract 3y^{2} from both sides.
-y^{2}+\frac{52}{25}+\frac{1}{5}y=0
Combine 2y^{2} and -3y^{2} to get -y^{2}.
-y^{2}+\frac{1}{5}y+\frac{52}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\frac{1}{5}±\sqrt{\left(\frac{1}{5}\right)^{2}-4\left(-1\right)\times \frac{52}{25}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{1}{5} for b, and \frac{52}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{1}{5}±\sqrt{\frac{1}{25}-4\left(-1\right)\times \frac{52}{25}}}{2\left(-1\right)}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\frac{1}{5}±\sqrt{\frac{1}{25}+4\times \frac{52}{25}}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-\frac{1}{5}±\sqrt{\frac{1+208}{25}}}{2\left(-1\right)}
Multiply 4 times \frac{52}{25}.
y=\frac{-\frac{1}{5}±\sqrt{\frac{209}{25}}}{2\left(-1\right)}
Add \frac{1}{25} to \frac{208}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{1}{5}±\frac{\sqrt{209}}{5}}{2\left(-1\right)}
Take the square root of \frac{209}{25}.
y=\frac{-\frac{1}{5}±\frac{\sqrt{209}}{5}}{-2}
Multiply 2 times -1.
y=\frac{\sqrt{209}-1}{-2\times 5}
Now solve the equation y=\frac{-\frac{1}{5}±\frac{\sqrt{209}}{5}}{-2} when ± is plus. Add -\frac{1}{5} to \frac{\sqrt{209}}{5}.
y=\frac{1-\sqrt{209}}{10}
Divide \frac{-1+\sqrt{209}}{5} by -2.
y=\frac{-\sqrt{209}-1}{-2\times 5}
Now solve the equation y=\frac{-\frac{1}{5}±\frac{\sqrt{209}}{5}}{-2} when ± is minus. Subtract \frac{\sqrt{209}}{5} from -\frac{1}{5}.
y=\frac{\sqrt{209}+1}{10}
Divide \frac{-1-\sqrt{209}}{5} by -2.
y=\frac{1-\sqrt{209}}{10} y=\frac{\sqrt{209}+1}{10}
The equation is now solved.
2y^{2}+\frac{1}{5}-y=3\left(\frac{1}{25}-\frac{2}{5}y+y^{2}\right)-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{5}-y\right)^{2}.
2y^{2}+\frac{1}{5}-y=\frac{3}{25}-\frac{6}{5}y+3y^{2}-2
Use the distributive property to multiply 3 by \frac{1}{25}-\frac{2}{5}y+y^{2}.
2y^{2}+\frac{1}{5}-y=-\frac{47}{25}-\frac{6}{5}y+3y^{2}
Subtract 2 from \frac{3}{25} to get -\frac{47}{25}.
2y^{2}+\frac{1}{5}-y+\frac{6}{5}y=-\frac{47}{25}+3y^{2}
Add \frac{6}{5}y to both sides.
2y^{2}+\frac{1}{5}+\frac{1}{5}y=-\frac{47}{25}+3y^{2}
Combine -y and \frac{6}{5}y to get \frac{1}{5}y.
2y^{2}+\frac{1}{5}+\frac{1}{5}y-3y^{2}=-\frac{47}{25}
Subtract 3y^{2} from both sides.
-y^{2}+\frac{1}{5}+\frac{1}{5}y=-\frac{47}{25}
Combine 2y^{2} and -3y^{2} to get -y^{2}.
-y^{2}+\frac{1}{5}y=-\frac{47}{25}-\frac{1}{5}
Subtract \frac{1}{5} from both sides.
-y^{2}+\frac{1}{5}y=-\frac{52}{25}
Subtract \frac{1}{5} from -\frac{47}{25} to get -\frac{52}{25}.
\frac{-y^{2}+\frac{1}{5}y}{-1}=-\frac{\frac{52}{25}}{-1}
Divide both sides by -1.
y^{2}+\frac{\frac{1}{5}}{-1}y=-\frac{\frac{52}{25}}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-\frac{1}{5}y=-\frac{\frac{52}{25}}{-1}
Divide \frac{1}{5} by -1.
y^{2}-\frac{1}{5}y=\frac{52}{25}
Divide -\frac{52}{25} by -1.
y^{2}-\frac{1}{5}y+\left(-\frac{1}{10}\right)^{2}=\frac{52}{25}+\left(-\frac{1}{10}\right)^{2}
Divide -\frac{1}{5}, the coefficient of the x term, by 2 to get -\frac{1}{10}. Then add the square of -\frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{1}{5}y+\frac{1}{100}=\frac{52}{25}+\frac{1}{100}
Square -\frac{1}{10} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{1}{5}y+\frac{1}{100}=\frac{209}{100}
Add \frac{52}{25} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{1}{10}\right)^{2}=\frac{209}{100}
Factor y^{2}-\frac{1}{5}y+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{10}\right)^{2}}=\sqrt{\frac{209}{100}}
Take the square root of both sides of the equation.
y-\frac{1}{10}=\frac{\sqrt{209}}{10} y-\frac{1}{10}=-\frac{\sqrt{209}}{10}
Simplify.
y=\frac{\sqrt{209}+1}{10} y=\frac{1-\sqrt{209}}{10}
Add \frac{1}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}