Solve for x
x=-2+\frac{6}{y}
y\neq 0
Solve for y
y=\frac{6}{x+2}
x\neq -2
Graph
Share
Copied to clipboard
xy-6=-2y
Subtract 2y from both sides. Anything subtracted from zero gives its negation.
xy=-2y+6
Add 6 to both sides.
yx=6-2y
The equation is in standard form.
\frac{yx}{y}=\frac{6-2y}{y}
Divide both sides by y.
x=\frac{6-2y}{y}
Dividing by y undoes the multiplication by y.
x=-2+\frac{6}{y}
Divide -2y+6 by y.
2y+xy=6
Add 6 to both sides. Anything plus zero gives itself.
\left(2+x\right)y=6
Combine all terms containing y.
\left(x+2\right)y=6
The equation is in standard form.
\frac{\left(x+2\right)y}{x+2}=\frac{6}{x+2}
Divide both sides by 2+x.
y=\frac{6}{x+2}
Dividing by 2+x undoes the multiplication by 2+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}