Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-9\right)^{2}=\left(\sqrt{5x+1}\right)^{2}
Square both sides of the equation.
4x^{2}-36x+81=\left(\sqrt{5x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-9\right)^{2}.
4x^{2}-36x+81=5x+1
Calculate \sqrt{5x+1} to the power of 2 and get 5x+1.
4x^{2}-36x+81-5x=1
Subtract 5x from both sides.
4x^{2}-41x+81=1
Combine -36x and -5x to get -41x.
4x^{2}-41x+81-1=0
Subtract 1 from both sides.
4x^{2}-41x+80=0
Subtract 1 from 81 to get 80.
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 4\times 80}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -41 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-41\right)±\sqrt{1681-4\times 4\times 80}}{2\times 4}
Square -41.
x=\frac{-\left(-41\right)±\sqrt{1681-16\times 80}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-41\right)±\sqrt{1681-1280}}{2\times 4}
Multiply -16 times 80.
x=\frac{-\left(-41\right)±\sqrt{401}}{2\times 4}
Add 1681 to -1280.
x=\frac{41±\sqrt{401}}{2\times 4}
The opposite of -41 is 41.
x=\frac{41±\sqrt{401}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{401}+41}{8}
Now solve the equation x=\frac{41±\sqrt{401}}{8} when ± is plus. Add 41 to \sqrt{401}.
x=\frac{41-\sqrt{401}}{8}
Now solve the equation x=\frac{41±\sqrt{401}}{8} when ± is minus. Subtract \sqrt{401} from 41.
x=\frac{\sqrt{401}+41}{8} x=\frac{41-\sqrt{401}}{8}
The equation is now solved.
2\times \frac{\sqrt{401}+41}{8}-9=\sqrt{5\times \frac{\sqrt{401}+41}{8}+1}
Substitute \frac{\sqrt{401}+41}{8} for x in the equation 2x-9=\sqrt{5x+1}.
\frac{1}{4}\times 401^{\frac{1}{2}}+\frac{5}{4}=\frac{5}{4}+\frac{1}{4}\times 401^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{401}+41}{8} satisfies the equation.
2\times \frac{41-\sqrt{401}}{8}-9=\sqrt{5\times \frac{41-\sqrt{401}}{8}+1}
Substitute \frac{41-\sqrt{401}}{8} for x in the equation 2x-9=\sqrt{5x+1}.
\frac{5}{4}-\frac{1}{4}\times 401^{\frac{1}{2}}=-\left(\frac{5}{4}-\frac{1}{4}\times 401^{\frac{1}{2}}\right)
Simplify. The value x=\frac{41-\sqrt{401}}{8} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{401}+41}{8}
Equation 2x-9=\sqrt{5x+1} has a unique solution.