Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-9+\frac{26x+24}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
Factor x^{2}+3x+2.
\frac{\left(2x-9\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{26x+24}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-9 times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\left(2x-9\right)\left(x+1\right)\left(x+2\right)+26x+24}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
Since \frac{\left(2x-9\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} and \frac{26x+24}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+6x^{2}+4x-9x^{2}-27x-18+26x+24}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
Do the multiplications in \left(2x-9\right)\left(x+1\right)\left(x+2\right)+26x+24.
\frac{2x^{3}-3x^{2}+3x+6}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
Combine like terms in 2x^{3}+6x^{2}+4x-9x^{2}-27x-18+26x+24.
\frac{\left(2x^{3}-3x^{2}+3x+6\right)x}{x\left(x+1\right)\left(x+2\right)}-\frac{2\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and x is x\left(x+1\right)\left(x+2\right). Multiply \frac{2x^{3}-3x^{2}+3x+6}{\left(x+1\right)\left(x+2\right)} times \frac{x}{x}. Multiply \frac{2}{x} times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\left(2x^{3}-3x^{2}+3x+6\right)x-2\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x+2\right)}
Since \frac{\left(2x^{3}-3x^{2}+3x+6\right)x}{x\left(x+1\right)\left(x+2\right)} and \frac{2\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{4}-3x^{3}+3x^{2}+6x-2x^{2}-4x-2x-4}{x\left(x+1\right)\left(x+2\right)}
Do the multiplications in \left(2x^{3}-3x^{2}+3x+6\right)x-2\left(x+1\right)\left(x+2\right).
\frac{2x^{4}-3x^{3}+x^{2}-4}{x\left(x+1\right)\left(x+2\right)}
Combine like terms in 2x^{4}-3x^{3}+3x^{2}+6x-2x^{2}-4x-2x-4.
\frac{2x^{4}-3x^{3}+x^{2}-4}{x^{3}+3x^{2}+2x}
Expand x\left(x+1\right)\left(x+2\right).
2x-9+\frac{26x+24}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
Factor x^{2}+3x+2.
\frac{\left(2x-9\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{26x+24}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-9 times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\left(2x-9\right)\left(x+1\right)\left(x+2\right)+26x+24}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
Since \frac{\left(2x-9\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} and \frac{26x+24}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+6x^{2}+4x-9x^{2}-27x-18+26x+24}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
Do the multiplications in \left(2x-9\right)\left(x+1\right)\left(x+2\right)+26x+24.
\frac{2x^{3}-3x^{2}+3x+6}{\left(x+1\right)\left(x+2\right)}-\frac{2}{x}
Combine like terms in 2x^{3}+6x^{2}+4x-9x^{2}-27x-18+26x+24.
\frac{\left(2x^{3}-3x^{2}+3x+6\right)x}{x\left(x+1\right)\left(x+2\right)}-\frac{2\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and x is x\left(x+1\right)\left(x+2\right). Multiply \frac{2x^{3}-3x^{2}+3x+6}{\left(x+1\right)\left(x+2\right)} times \frac{x}{x}. Multiply \frac{2}{x} times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\left(2x^{3}-3x^{2}+3x+6\right)x-2\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x+2\right)}
Since \frac{\left(2x^{3}-3x^{2}+3x+6\right)x}{x\left(x+1\right)\left(x+2\right)} and \frac{2\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{4}-3x^{3}+3x^{2}+6x-2x^{2}-4x-2x-4}{x\left(x+1\right)\left(x+2\right)}
Do the multiplications in \left(2x^{3}-3x^{2}+3x+6\right)x-2\left(x+1\right)\left(x+2\right).
\frac{2x^{4}-3x^{3}+x^{2}-4}{x\left(x+1\right)\left(x+2\right)}
Combine like terms in 2x^{4}-3x^{3}+3x^{2}+6x-2x^{2}-4x-2x-4.
\frac{2x^{4}-3x^{3}+x^{2}-4}{x^{3}+3x^{2}+2x}
Expand x\left(x+1\right)\left(x+2\right).