Solve for x
x = \frac{\sqrt{3} + 4}{2} \approx 2.866025404
Graph
Share
Copied to clipboard
\left(2x-5\right)^{2}=\left(2\sqrt{3-x}\right)^{2}
Square both sides of the equation.
4x^{2}-20x+25=\left(2\sqrt{3-x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25=2^{2}\left(\sqrt{3-x}\right)^{2}
Expand \left(2\sqrt{3-x}\right)^{2}.
4x^{2}-20x+25=4\left(\sqrt{3-x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-20x+25=4\left(3-x\right)
Calculate \sqrt{3-x} to the power of 2 and get 3-x.
4x^{2}-20x+25=12-4x
Use the distributive property to multiply 4 by 3-x.
4x^{2}-20x+25-12=-4x
Subtract 12 from both sides.
4x^{2}-20x+13=-4x
Subtract 12 from 25 to get 13.
4x^{2}-20x+13+4x=0
Add 4x to both sides.
4x^{2}-16x+13=0
Combine -20x and 4x to get -16x.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 13}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -16 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 13}}{2\times 4}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-16\times 13}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-16\right)±\sqrt{256-208}}{2\times 4}
Multiply -16 times 13.
x=\frac{-\left(-16\right)±\sqrt{48}}{2\times 4}
Add 256 to -208.
x=\frac{-\left(-16\right)±4\sqrt{3}}{2\times 4}
Take the square root of 48.
x=\frac{16±4\sqrt{3}}{2\times 4}
The opposite of -16 is 16.
x=\frac{16±4\sqrt{3}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{3}+16}{8}
Now solve the equation x=\frac{16±4\sqrt{3}}{8} when ± is plus. Add 16 to 4\sqrt{3}.
x=\frac{\sqrt{3}}{2}+2
Divide 16+4\sqrt{3} by 8.
x=\frac{16-4\sqrt{3}}{8}
Now solve the equation x=\frac{16±4\sqrt{3}}{8} when ± is minus. Subtract 4\sqrt{3} from 16.
x=-\frac{\sqrt{3}}{2}+2
Divide 16-4\sqrt{3} by 8.
x=\frac{\sqrt{3}}{2}+2 x=-\frac{\sqrt{3}}{2}+2
The equation is now solved.
2\left(\frac{\sqrt{3}}{2}+2\right)-5=2\sqrt{3-\left(\frac{\sqrt{3}}{2}+2\right)}
Substitute \frac{\sqrt{3}}{2}+2 for x in the equation 2x-5=2\sqrt{3-x}.
3^{\frac{1}{2}}-1=-1+3^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{3}}{2}+2 satisfies the equation.
2\left(-\frac{\sqrt{3}}{2}+2\right)-5=2\sqrt{3-\left(-\frac{\sqrt{3}}{2}+2\right)}
Substitute -\frac{\sqrt{3}}{2}+2 for x in the equation 2x-5=2\sqrt{3-x}.
-3^{\frac{1}{2}}-1=1+3^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{3}}{2}+2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{3}}{2}+2
Equation 2x-5=2\sqrt{3-x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}