Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-5\right)^{2}=\left(2\sqrt{3-x}\right)^{2}
Square both sides of the equation.
4x^{2}-20x+25=\left(2\sqrt{3-x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25=2^{2}\left(\sqrt{3-x}\right)^{2}
Expand \left(2\sqrt{3-x}\right)^{2}.
4x^{2}-20x+25=4\left(\sqrt{3-x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-20x+25=4\left(3-x\right)
Calculate \sqrt{3-x} to the power of 2 and get 3-x.
4x^{2}-20x+25=12-4x
Use the distributive property to multiply 4 by 3-x.
4x^{2}-20x+25-12=-4x
Subtract 12 from both sides.
4x^{2}-20x+13=-4x
Subtract 12 from 25 to get 13.
4x^{2}-20x+13+4x=0
Add 4x to both sides.
4x^{2}-16x+13=0
Combine -20x and 4x to get -16x.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 13}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -16 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 13}}{2\times 4}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-16\times 13}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-16\right)±\sqrt{256-208}}{2\times 4}
Multiply -16 times 13.
x=\frac{-\left(-16\right)±\sqrt{48}}{2\times 4}
Add 256 to -208.
x=\frac{-\left(-16\right)±4\sqrt{3}}{2\times 4}
Take the square root of 48.
x=\frac{16±4\sqrt{3}}{2\times 4}
The opposite of -16 is 16.
x=\frac{16±4\sqrt{3}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{3}+16}{8}
Now solve the equation x=\frac{16±4\sqrt{3}}{8} when ± is plus. Add 16 to 4\sqrt{3}.
x=\frac{\sqrt{3}}{2}+2
Divide 16+4\sqrt{3} by 8.
x=\frac{16-4\sqrt{3}}{8}
Now solve the equation x=\frac{16±4\sqrt{3}}{8} when ± is minus. Subtract 4\sqrt{3} from 16.
x=-\frac{\sqrt{3}}{2}+2
Divide 16-4\sqrt{3} by 8.
x=\frac{\sqrt{3}}{2}+2 x=-\frac{\sqrt{3}}{2}+2
The equation is now solved.
2\left(\frac{\sqrt{3}}{2}+2\right)-5=2\sqrt{3-\left(\frac{\sqrt{3}}{2}+2\right)}
Substitute \frac{\sqrt{3}}{2}+2 for x in the equation 2x-5=2\sqrt{3-x}.
3^{\frac{1}{2}}-1=-1+3^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{3}}{2}+2 satisfies the equation.
2\left(-\frac{\sqrt{3}}{2}+2\right)-5=2\sqrt{3-\left(-\frac{\sqrt{3}}{2}+2\right)}
Substitute -\frac{\sqrt{3}}{2}+2 for x in the equation 2x-5=2\sqrt{3-x}.
-3^{\frac{1}{2}}-1=1+3^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{3}}{2}+2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{3}}{2}+2
Equation 2x-5=2\sqrt{3-x} has a unique solution.