Solve for x
x<\frac{212}{19}
Graph
Share
Copied to clipboard
24x-60<4+3\times 3x+4\left(1-x\right)+144
Multiply both sides of the equation by 12, the least common multiple of 3,4. Since 12 is positive, the inequality direction remains the same.
24x-60<4+9x+4\left(1-x\right)+144
Multiply 3 and 3 to get 9.
24x-60<4+9x+4-4x+144
Use the distributive property to multiply 4 by 1-x.
24x-60<8+9x-4x+144
Add 4 and 4 to get 8.
24x-60<8+5x+144
Combine 9x and -4x to get 5x.
24x-60<152+5x
Add 8 and 144 to get 152.
24x-60-5x<152
Subtract 5x from both sides.
19x-60<152
Combine 24x and -5x to get 19x.
19x<152+60
Add 60 to both sides.
19x<212
Add 152 and 60 to get 212.
x<\frac{212}{19}
Divide both sides by 19. Since 19 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}