Solve for x
x=\frac{2}{14-3y}
y\neq \frac{14}{3}
Solve for y
y=\frac{14}{3}-\frac{2}{3x}
x\neq 0
Graph
Share
Copied to clipboard
2x-2-3x\left(y-4\right)=0
Multiply -1 and 3 to get -3.
2x-2-3xy+12x=0
Use the distributive property to multiply -3x by y-4.
14x-2-3xy=0
Combine 2x and 12x to get 14x.
14x-3xy=2
Add 2 to both sides. Anything plus zero gives itself.
\left(14-3y\right)x=2
Combine all terms containing x.
\frac{\left(14-3y\right)x}{14-3y}=\frac{2}{14-3y}
Divide both sides by -3y+14.
x=\frac{2}{14-3y}
Dividing by -3y+14 undoes the multiplication by -3y+14.
2x-2-3x\left(y-4\right)=0
Multiply -1 and 3 to get -3.
2x-2-3xy+12x=0
Use the distributive property to multiply -3x by y-4.
14x-2-3xy=0
Combine 2x and 12x to get 14x.
-2-3xy=-14x
Subtract 14x from both sides. Anything subtracted from zero gives its negation.
-3xy=-14x+2
Add 2 to both sides.
\left(-3x\right)y=2-14x
The equation is in standard form.
\frac{\left(-3x\right)y}{-3x}=\frac{2-14x}{-3x}
Divide both sides by -3x.
y=\frac{2-14x}{-3x}
Dividing by -3x undoes the multiplication by -3x.
y=\frac{14}{3}-\frac{2}{3x}
Divide -14x+2 by -3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}