Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\sqrt{x^{2}+1}=-2x
Subtract 2x from both sides of the equation.
\left(-\sqrt{x^{2}+1}\right)^{2}=\left(-2x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{x^{2}+1}\right)^{2}=\left(-2x\right)^{2}
Expand \left(-\sqrt{x^{2}+1}\right)^{2}.
1\left(\sqrt{x^{2}+1}\right)^{2}=\left(-2x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(x^{2}+1\right)=\left(-2x\right)^{2}
Calculate \sqrt{x^{2}+1} to the power of 2 and get x^{2}+1.
x^{2}+1=\left(-2x\right)^{2}
Use the distributive property to multiply 1 by x^{2}+1.
x^{2}+1=\left(-2\right)^{2}x^{2}
Expand \left(-2x\right)^{2}.
x^{2}+1=4x^{2}
Calculate -2 to the power of 2 and get 4.
x^{2}+1-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+1=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-1}{-3}
Divide both sides by -3.
x^{2}=\frac{1}{3}
Fraction \frac{-1}{-3} can be simplified to \frac{1}{3} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Take the square root of both sides of the equation.
2\times \frac{\sqrt{3}}{3}-\sqrt{\left(\frac{\sqrt{3}}{3}\right)^{2}+1}=0
Substitute \frac{\sqrt{3}}{3} for x in the equation 2x-\sqrt{x^{2}+1}=0.
0=0
Simplify. The value x=\frac{\sqrt{3}}{3} satisfies the equation.
2\left(-\frac{\sqrt{3}}{3}\right)-\sqrt{\left(-\frac{\sqrt{3}}{3}\right)^{2}+1}=0
Substitute -\frac{\sqrt{3}}{3} for x in the equation 2x-\sqrt{x^{2}+1}=0.
-\frac{4}{3}\times 3^{\frac{1}{2}}=0
Simplify. The value x=-\frac{\sqrt{3}}{3} does not satisfy the equation.
x=\frac{\sqrt{3}}{3}
Equation -\sqrt{x^{2}+1}=-2x has a unique solution.