Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{12x+\pi }{12n}\text{, }&n\neq 0\\k\in \mathrm{C}\text{, }&x=-\frac{\pi }{12}\text{ and }n=0\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{12x+\pi }{12k}\text{, }&k\neq 0\\n\in \mathrm{C}\text{, }&x=-\frac{\pi }{12}\text{ and }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{12x+\pi }{12n}\text{, }&n\neq 0\\k\in \mathrm{R}\text{, }&x=-\frac{\pi }{12}\text{ and }n=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\frac{12x+\pi }{12k}\text{, }&k\neq 0\\n\in \mathrm{R}\text{, }&x=-\frac{\pi }{12}\text{ and }k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
12x-2\pi =-3\pi +12kn
Multiply both sides of the equation by 6, the least common multiple of 3,2.
-3\pi +12kn=12x-2\pi
Swap sides so that all variable terms are on the left hand side.
12kn=12x-2\pi +3\pi
Add 3\pi to both sides.
12kn=12x+\pi
Combine -2\pi and 3\pi to get \pi .
12nk=12x+\pi
The equation is in standard form.
\frac{12nk}{12n}=\frac{12x+\pi }{12n}
Divide both sides by 12n.
k=\frac{12x+\pi }{12n}
Dividing by 12n undoes the multiplication by 12n.
12x-2\pi =-3\pi +12kn
Multiply both sides of the equation by 6, the least common multiple of 3,2.
-3\pi +12kn=12x-2\pi
Swap sides so that all variable terms are on the left hand side.
12kn=12x-2\pi +3\pi
Add 3\pi to both sides.
12kn=12x+\pi
Combine -2\pi and 3\pi to get \pi .
\frac{12kn}{12k}=\frac{12x+\pi }{12k}
Divide both sides by 12k.
n=\frac{12x+\pi }{12k}
Dividing by 12k undoes the multiplication by 12k.
12x-2\pi =-3\pi +12kn
Multiply both sides of the equation by 6, the least common multiple of 3,2.
-3\pi +12kn=12x-2\pi
Swap sides so that all variable terms are on the left hand side.
12kn=12x-2\pi +3\pi
Add 3\pi to both sides.
12kn=12x+\pi
Combine -2\pi and 3\pi to get \pi .
12nk=12x+\pi
The equation is in standard form.
\frac{12nk}{12n}=\frac{12x+\pi }{12n}
Divide both sides by 12n.
k=\frac{12x+\pi }{12n}
Dividing by 12n undoes the multiplication by 12n.
12x-2\pi =-3\pi +12kn
Multiply both sides of the equation by 6, the least common multiple of 3,2.
-3\pi +12kn=12x-2\pi
Swap sides so that all variable terms are on the left hand side.
12kn=12x-2\pi +3\pi
Add 3\pi to both sides.
12kn=12x+\pi
Combine -2\pi and 3\pi to get \pi .
\frac{12kn}{12k}=\frac{12x+\pi }{12k}
Divide both sides by 12k.
n=\frac{12x+\pi }{12k}
Dividing by 12k undoes the multiplication by 12k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}