Solve for x
x=\frac{17y}{2y+3}
y\neq -\frac{3}{2}
Solve for y
y=\frac{3x}{17-2x}
x\neq \frac{17}{2}
Graph
Share
Copied to clipboard
2xy-2x+4y\left(4-x\right)=x-y
Use the distributive property to multiply 2x by y-1.
2xy-2x+16y-4yx=x-y
Use the distributive property to multiply 4y by 4-x.
-2xy-2x+16y=x-y
Combine 2xy and -4yx to get -2xy.
-2xy-2x+16y-x=-y
Subtract x from both sides.
-2xy-3x+16y=-y
Combine -2x and -x to get -3x.
-2xy-3x=-y-16y
Subtract 16y from both sides.
-2xy-3x=-17y
Combine -y and -16y to get -17y.
\left(-2y-3\right)x=-17y
Combine all terms containing x.
\frac{\left(-2y-3\right)x}{-2y-3}=-\frac{17y}{-2y-3}
Divide both sides by -2y-3.
x=-\frac{17y}{-2y-3}
Dividing by -2y-3 undoes the multiplication by -2y-3.
x=\frac{17y}{2y+3}
Divide -17y by -2y-3.
2xy-2x+4y\left(4-x\right)=x-y
Use the distributive property to multiply 2x by y-1.
2xy-2x+16y-4yx=x-y
Use the distributive property to multiply 4y by 4-x.
-2xy-2x+16y=x-y
Combine 2xy and -4yx to get -2xy.
-2xy-2x+16y+y=x
Add y to both sides.
-2xy-2x+17y=x
Combine 16y and y to get 17y.
-2xy+17y=x+2x
Add 2x to both sides.
-2xy+17y=3x
Combine x and 2x to get 3x.
\left(-2x+17\right)y=3x
Combine all terms containing y.
\left(17-2x\right)y=3x
The equation is in standard form.
\frac{\left(17-2x\right)y}{17-2x}=\frac{3x}{17-2x}
Divide both sides by -2x+17.
y=\frac{3x}{17-2x}
Dividing by -2x+17 undoes the multiplication by -2x+17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}