Solve for x
x=4
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
2x^{2}+2x-4x\left(x-2\right)-2x=x-4
Use the distributive property to multiply 2x by x+1.
2x^{2}+2x-4x\left(x-2\right)-2x-x=-4
Subtract x from both sides.
2x^{2}+2x-4x\left(x-2\right)-3x=-4
Combine -2x and -x to get -3x.
2x^{2}+2x-4x\left(x-2\right)-3x+4=0
Add 4 to both sides.
2x^{2}+2x-4x^{2}+8x-3x+4=0
Use the distributive property to multiply -4x by x-2.
-2x^{2}+2x+8x-3x+4=0
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}+10x-3x+4=0
Combine 2x and 8x to get 10x.
-2x^{2}+7x+4=0
Combine 10x and -3x to get 7x.
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 7 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-2\right)\times 4}}{2\left(-2\right)}
Square 7.
x=\frac{-7±\sqrt{49+8\times 4}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-7±\sqrt{49+32}}{2\left(-2\right)}
Multiply 8 times 4.
x=\frac{-7±\sqrt{81}}{2\left(-2\right)}
Add 49 to 32.
x=\frac{-7±9}{2\left(-2\right)}
Take the square root of 81.
x=\frac{-7±9}{-4}
Multiply 2 times -2.
x=\frac{2}{-4}
Now solve the equation x=\frac{-7±9}{-4} when ± is plus. Add -7 to 9.
x=-\frac{1}{2}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{16}{-4}
Now solve the equation x=\frac{-7±9}{-4} when ± is minus. Subtract 9 from -7.
x=4
Divide -16 by -4.
x=-\frac{1}{2} x=4
The equation is now solved.
2x^{2}+2x-4x\left(x-2\right)-2x=x-4
Use the distributive property to multiply 2x by x+1.
2x^{2}+2x-4x\left(x-2\right)-2x-x=-4
Subtract x from both sides.
2x^{2}+2x-4x\left(x-2\right)-3x=-4
Combine -2x and -x to get -3x.
2x^{2}+2x-4x^{2}+8x-3x=-4
Use the distributive property to multiply -4x by x-2.
-2x^{2}+2x+8x-3x=-4
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}+10x-3x=-4
Combine 2x and 8x to get 10x.
-2x^{2}+7x=-4
Combine 10x and -3x to get 7x.
\frac{-2x^{2}+7x}{-2}=-\frac{4}{-2}
Divide both sides by -2.
x^{2}+\frac{7}{-2}x=-\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{7}{2}x=-\frac{4}{-2}
Divide 7 by -2.
x^{2}-\frac{7}{2}x=2
Divide -4 by -2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=2+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=2+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{81}{16}
Add 2 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{81}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{9}{4} x-\frac{7}{4}=-\frac{9}{4}
Simplify.
x=4 x=-\frac{1}{2}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}