Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x+4x^{2}=56
Use the distributive property to multiply 2x by 6+2x.
12x+4x^{2}-56=0
Subtract 56 from both sides.
4x^{2}+12x-56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 4\left(-56\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 12 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\left(-56\right)}}{2\times 4}
Square 12.
x=\frac{-12±\sqrt{144-16\left(-56\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-12±\sqrt{144+896}}{2\times 4}
Multiply -16 times -56.
x=\frac{-12±\sqrt{1040}}{2\times 4}
Add 144 to 896.
x=\frac{-12±4\sqrt{65}}{2\times 4}
Take the square root of 1040.
x=\frac{-12±4\sqrt{65}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{65}-12}{8}
Now solve the equation x=\frac{-12±4\sqrt{65}}{8} when ± is plus. Add -12 to 4\sqrt{65}.
x=\frac{\sqrt{65}-3}{2}
Divide -12+4\sqrt{65} by 8.
x=\frac{-4\sqrt{65}-12}{8}
Now solve the equation x=\frac{-12±4\sqrt{65}}{8} when ± is minus. Subtract 4\sqrt{65} from -12.
x=\frac{-\sqrt{65}-3}{2}
Divide -12-4\sqrt{65} by 8.
x=\frac{\sqrt{65}-3}{2} x=\frac{-\sqrt{65}-3}{2}
The equation is now solved.
12x+4x^{2}=56
Use the distributive property to multiply 2x by 6+2x.
4x^{2}+12x=56
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+12x}{4}=\frac{56}{4}
Divide both sides by 4.
x^{2}+\frac{12}{4}x=\frac{56}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+3x=\frac{56}{4}
Divide 12 by 4.
x^{2}+3x=14
Divide 56 by 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=14+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=14+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{65}{4}
Add 14 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{65}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{65}}{2} x+\frac{3}{2}=-\frac{\sqrt{65}}{2}
Simplify.
x=\frac{\sqrt{65}-3}{2} x=\frac{-\sqrt{65}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.