Solve for x
x=2
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
6x^{2}-12x=3\left(3x-6\right)
Use the distributive property to multiply 2x by 3x-6.
6x^{2}-12x=9x-18
Use the distributive property to multiply 3 by 3x-6.
6x^{2}-12x-9x=-18
Subtract 9x from both sides.
6x^{2}-21x=-18
Combine -12x and -9x to get -21x.
6x^{2}-21x+18=0
Add 18 to both sides.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 6\times 18}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -21 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 6\times 18}}{2\times 6}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-24\times 18}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-21\right)±\sqrt{441-432}}{2\times 6}
Multiply -24 times 18.
x=\frac{-\left(-21\right)±\sqrt{9}}{2\times 6}
Add 441 to -432.
x=\frac{-\left(-21\right)±3}{2\times 6}
Take the square root of 9.
x=\frac{21±3}{2\times 6}
The opposite of -21 is 21.
x=\frac{21±3}{12}
Multiply 2 times 6.
x=\frac{24}{12}
Now solve the equation x=\frac{21±3}{12} when ± is plus. Add 21 to 3.
x=2
Divide 24 by 12.
x=\frac{18}{12}
Now solve the equation x=\frac{21±3}{12} when ± is minus. Subtract 3 from 21.
x=\frac{3}{2}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
x=2 x=\frac{3}{2}
The equation is now solved.
6x^{2}-12x=3\left(3x-6\right)
Use the distributive property to multiply 2x by 3x-6.
6x^{2}-12x=9x-18
Use the distributive property to multiply 3 by 3x-6.
6x^{2}-12x-9x=-18
Subtract 9x from both sides.
6x^{2}-21x=-18
Combine -12x and -9x to get -21x.
\frac{6x^{2}-21x}{6}=-\frac{18}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{21}{6}\right)x=-\frac{18}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{7}{2}x=-\frac{18}{6}
Reduce the fraction \frac{-21}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{2}x=-3
Divide -18 by 6.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-3+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-3+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{1}{16}
Add -3 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{1}{4} x-\frac{7}{4}=-\frac{1}{4}
Simplify.
x=2 x=\frac{3}{2}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}