Solve for x
x=\frac{\sqrt{137}-13}{8}\approx -0.161912511
x=\frac{-\sqrt{137}-13}{8}\approx -3.088087489
Graph
Share
Copied to clipboard
4x^{2}+20x=5x+2\left(x-1\right)
Use the distributive property to multiply 2x by 2x+10.
4x^{2}+20x=5x+2x-2
Use the distributive property to multiply 2 by x-1.
4x^{2}+20x=7x-2
Combine 5x and 2x to get 7x.
4x^{2}+20x-7x=-2
Subtract 7x from both sides.
4x^{2}+13x=-2
Combine 20x and -7x to get 13x.
4x^{2}+13x+2=0
Add 2 to both sides.
x=\frac{-13±\sqrt{13^{2}-4\times 4\times 2}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 13 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 4\times 2}}{2\times 4}
Square 13.
x=\frac{-13±\sqrt{169-16\times 2}}{2\times 4}
Multiply -4 times 4.
x=\frac{-13±\sqrt{169-32}}{2\times 4}
Multiply -16 times 2.
x=\frac{-13±\sqrt{137}}{2\times 4}
Add 169 to -32.
x=\frac{-13±\sqrt{137}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{137}-13}{8}
Now solve the equation x=\frac{-13±\sqrt{137}}{8} when ± is plus. Add -13 to \sqrt{137}.
x=\frac{-\sqrt{137}-13}{8}
Now solve the equation x=\frac{-13±\sqrt{137}}{8} when ± is minus. Subtract \sqrt{137} from -13.
x=\frac{\sqrt{137}-13}{8} x=\frac{-\sqrt{137}-13}{8}
The equation is now solved.
4x^{2}+20x=5x+2\left(x-1\right)
Use the distributive property to multiply 2x by 2x+10.
4x^{2}+20x=5x+2x-2
Use the distributive property to multiply 2 by x-1.
4x^{2}+20x=7x-2
Combine 5x and 2x to get 7x.
4x^{2}+20x-7x=-2
Subtract 7x from both sides.
4x^{2}+13x=-2
Combine 20x and -7x to get 13x.
\frac{4x^{2}+13x}{4}=-\frac{2}{4}
Divide both sides by 4.
x^{2}+\frac{13}{4}x=-\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{13}{4}x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{13}{4}x+\left(\frac{13}{8}\right)^{2}=-\frac{1}{2}+\left(\frac{13}{8}\right)^{2}
Divide \frac{13}{4}, the coefficient of the x term, by 2 to get \frac{13}{8}. Then add the square of \frac{13}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{4}x+\frac{169}{64}=-\frac{1}{2}+\frac{169}{64}
Square \frac{13}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{4}x+\frac{169}{64}=\frac{137}{64}
Add -\frac{1}{2} to \frac{169}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{8}\right)^{2}=\frac{137}{64}
Factor x^{2}+\frac{13}{4}x+\frac{169}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{8}\right)^{2}}=\sqrt{\frac{137}{64}}
Take the square root of both sides of the equation.
x+\frac{13}{8}=\frac{\sqrt{137}}{8} x+\frac{13}{8}=-\frac{\sqrt{137}}{8}
Simplify.
x=\frac{\sqrt{137}-13}{8} x=\frac{-\sqrt{137}-13}{8}
Subtract \frac{13}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}