Solve for x
x = \frac{12}{5} = 2\frac{2}{5} = 2.4
Graph
Quiz
Algebra
5 problems similar to:
2 x ( \sqrt { \frac { 1 } { 4 - x } } ) - 3 \cdot \sqrt { 4 - x } = 0
Share
Copied to clipboard
2x\sqrt{\frac{1}{4-x}}=3\sqrt{4-x}
Subtract -3\sqrt{4-x} from both sides of the equation.
\left(2x\sqrt{\frac{1}{4-x}}\right)^{2}=\left(3\sqrt{4-x}\right)^{2}
Square both sides of the equation.
2^{2}x^{2}\left(\sqrt{\frac{1}{4-x}}\right)^{2}=\left(3\sqrt{4-x}\right)^{2}
Expand \left(2x\sqrt{\frac{1}{4-x}}\right)^{2}.
4x^{2}\left(\sqrt{\frac{1}{4-x}}\right)^{2}=\left(3\sqrt{4-x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}\times \frac{1}{4-x}=\left(3\sqrt{4-x}\right)^{2}
Calculate \sqrt{\frac{1}{4-x}} to the power of 2 and get \frac{1}{4-x}.
\frac{4}{4-x}x^{2}=\left(3\sqrt{4-x}\right)^{2}
Express 4\times \frac{1}{4-x} as a single fraction.
\frac{4}{4-x}x^{2}=3^{2}\left(\sqrt{4-x}\right)^{2}
Expand \left(3\sqrt{4-x}\right)^{2}.
\frac{4}{4-x}x^{2}=9\left(\sqrt{4-x}\right)^{2}
Calculate 3 to the power of 2 and get 9.
\frac{4}{4-x}x^{2}=9\left(4-x\right)
Calculate \sqrt{4-x} to the power of 2 and get 4-x.
\frac{4}{4-x}x^{2}=36-9x
Use the distributive property to multiply 9 by 4-x.
\frac{4x^{2}}{4-x}=36-9x
Express \frac{4}{4-x}x^{2} as a single fraction.
4x^{2}=\left(-x+4\right)\times 36-9x\left(-x+4\right)
Multiply both sides of the equation by -x+4.
4x^{2}=-36x+144-9x\left(-x+4\right)
Use the distributive property to multiply -x+4 by 36.
4x^{2}=-36x+144+9x^{2}-36x
Use the distributive property to multiply -9x by -x+4.
4x^{2}=-72x+144+9x^{2}
Combine -36x and -36x to get -72x.
4x^{2}+72x=144+9x^{2}
Add 72x to both sides.
4x^{2}+72x-144=9x^{2}
Subtract 144 from both sides.
4x^{2}+72x-144-9x^{2}=0
Subtract 9x^{2} from both sides.
-5x^{2}+72x-144=0
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
a+b=72 ab=-5\left(-144\right)=720
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -5x^{2}+ax+bx-144. To find a and b, set up a system to be solved.
1,720 2,360 3,240 4,180 5,144 6,120 8,90 9,80 10,72 12,60 15,48 16,45 18,40 20,36 24,30
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 720.
1+720=721 2+360=362 3+240=243 4+180=184 5+144=149 6+120=126 8+90=98 9+80=89 10+72=82 12+60=72 15+48=63 16+45=61 18+40=58 20+36=56 24+30=54
Calculate the sum for each pair.
a=60 b=12
The solution is the pair that gives sum 72.
\left(-5x^{2}+60x\right)+\left(12x-144\right)
Rewrite -5x^{2}+72x-144 as \left(-5x^{2}+60x\right)+\left(12x-144\right).
5x\left(-x+12\right)-12\left(-x+12\right)
Factor out 5x in the first and -12 in the second group.
\left(-x+12\right)\left(5x-12\right)
Factor out common term -x+12 by using distributive property.
x=12 x=\frac{12}{5}
To find equation solutions, solve -x+12=0 and 5x-12=0.
2\times 12\sqrt{\frac{1}{4-12}}-3\sqrt{4-12}=0
Substitute 12 for x in the equation 2x\sqrt{\frac{1}{4-x}}-3\sqrt{4-x}=0. The expression \sqrt{\frac{1}{4-12}} is undefined because the radicand cannot be negative.
2\times \frac{12}{5}\sqrt{\frac{1}{4-\frac{12}{5}}}-3\sqrt{4-\frac{12}{5}}=0
Substitute \frac{12}{5} for x in the equation 2x\sqrt{\frac{1}{4-x}}-3\sqrt{4-x}=0.
0=0
Simplify. The value x=\frac{12}{5} satisfies the equation.
x=\frac{12}{5}
Equation 2\sqrt{\frac{1}{4-x}}x=3\sqrt{4-x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}