Solve for x
x=\frac{5}{7}\approx 0.714285714
x=0
Graph
Share
Copied to clipboard
2x^{2}-x+1-9x^{2}=-6x+1
Subtract 9x^{2} from both sides.
-7x^{2}-x+1=-6x+1
Combine 2x^{2} and -9x^{2} to get -7x^{2}.
-7x^{2}-x+1+6x=1
Add 6x to both sides.
-7x^{2}+5x+1=1
Combine -x and 6x to get 5x.
-7x^{2}+5x+1-1=0
Subtract 1 from both sides.
-7x^{2}+5x=0
Subtract 1 from 1 to get 0.
x\left(-7x+5\right)=0
Factor out x.
x=0 x=\frac{5}{7}
To find equation solutions, solve x=0 and -7x+5=0.
2x^{2}-x+1-9x^{2}=-6x+1
Subtract 9x^{2} from both sides.
-7x^{2}-x+1=-6x+1
Combine 2x^{2} and -9x^{2} to get -7x^{2}.
-7x^{2}-x+1+6x=1
Add 6x to both sides.
-7x^{2}+5x+1=1
Combine -x and 6x to get 5x.
-7x^{2}+5x+1-1=0
Subtract 1 from both sides.
-7x^{2}+5x=0
Subtract 1 from 1 to get 0.
x=\frac{-5±\sqrt{5^{2}}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 5 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2\left(-7\right)}
Take the square root of 5^{2}.
x=\frac{-5±5}{-14}
Multiply 2 times -7.
x=\frac{0}{-14}
Now solve the equation x=\frac{-5±5}{-14} when ± is plus. Add -5 to 5.
x=0
Divide 0 by -14.
x=-\frac{10}{-14}
Now solve the equation x=\frac{-5±5}{-14} when ± is minus. Subtract 5 from -5.
x=\frac{5}{7}
Reduce the fraction \frac{-10}{-14} to lowest terms by extracting and canceling out 2.
x=0 x=\frac{5}{7}
The equation is now solved.
2x^{2}-x+1-9x^{2}=-6x+1
Subtract 9x^{2} from both sides.
-7x^{2}-x+1=-6x+1
Combine 2x^{2} and -9x^{2} to get -7x^{2}.
-7x^{2}-x+1+6x=1
Add 6x to both sides.
-7x^{2}+5x+1=1
Combine -x and 6x to get 5x.
-7x^{2}+5x=1-1
Subtract 1 from both sides.
-7x^{2}+5x=0
Subtract 1 from 1 to get 0.
\frac{-7x^{2}+5x}{-7}=\frac{0}{-7}
Divide both sides by -7.
x^{2}+\frac{5}{-7}x=\frac{0}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{5}{7}x=\frac{0}{-7}
Divide 5 by -7.
x^{2}-\frac{5}{7}x=0
Divide 0 by -7.
x^{2}-\frac{5}{7}x+\left(-\frac{5}{14}\right)^{2}=\left(-\frac{5}{14}\right)^{2}
Divide -\frac{5}{7}, the coefficient of the x term, by 2 to get -\frac{5}{14}. Then add the square of -\frac{5}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{7}x+\frac{25}{196}=\frac{25}{196}
Square -\frac{5}{14} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{5}{14}\right)^{2}=\frac{25}{196}
Factor x^{2}-\frac{5}{7}x+\frac{25}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{14}\right)^{2}}=\sqrt{\frac{25}{196}}
Take the square root of both sides of the equation.
x-\frac{5}{14}=\frac{5}{14} x-\frac{5}{14}=-\frac{5}{14}
Simplify.
x=\frac{5}{7} x=0
Add \frac{5}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}