Solve for x
x=\frac{\sqrt{6910}}{2}+24\approx 65.563204881
x=-\frac{\sqrt{6910}}{2}+24\approx -17.563204881
Graph
Share
Copied to clipboard
2x^{2}-96x-2303=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-96\right)±\sqrt{\left(-96\right)^{2}-4\times 2\left(-2303\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -96 for b, and -2303 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-96\right)±\sqrt{9216-4\times 2\left(-2303\right)}}{2\times 2}
Square -96.
x=\frac{-\left(-96\right)±\sqrt{9216-8\left(-2303\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-96\right)±\sqrt{9216+18424}}{2\times 2}
Multiply -8 times -2303.
x=\frac{-\left(-96\right)±\sqrt{27640}}{2\times 2}
Add 9216 to 18424.
x=\frac{-\left(-96\right)±2\sqrt{6910}}{2\times 2}
Take the square root of 27640.
x=\frac{96±2\sqrt{6910}}{2\times 2}
The opposite of -96 is 96.
x=\frac{96±2\sqrt{6910}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{6910}+96}{4}
Now solve the equation x=\frac{96±2\sqrt{6910}}{4} when ± is plus. Add 96 to 2\sqrt{6910}.
x=\frac{\sqrt{6910}}{2}+24
Divide 96+2\sqrt{6910} by 4.
x=\frac{96-2\sqrt{6910}}{4}
Now solve the equation x=\frac{96±2\sqrt{6910}}{4} when ± is minus. Subtract 2\sqrt{6910} from 96.
x=-\frac{\sqrt{6910}}{2}+24
Divide 96-2\sqrt{6910} by 4.
x=\frac{\sqrt{6910}}{2}+24 x=-\frac{\sqrt{6910}}{2}+24
The equation is now solved.
2x^{2}-96x-2303=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-96x-2303-\left(-2303\right)=-\left(-2303\right)
Add 2303 to both sides of the equation.
2x^{2}-96x=-\left(-2303\right)
Subtracting -2303 from itself leaves 0.
2x^{2}-96x=2303
Subtract -2303 from 0.
\frac{2x^{2}-96x}{2}=\frac{2303}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{96}{2}\right)x=\frac{2303}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-48x=\frac{2303}{2}
Divide -96 by 2.
x^{2}-48x+\left(-24\right)^{2}=\frac{2303}{2}+\left(-24\right)^{2}
Divide -48, the coefficient of the x term, by 2 to get -24. Then add the square of -24 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-48x+576=\frac{2303}{2}+576
Square -24.
x^{2}-48x+576=\frac{3455}{2}
Add \frac{2303}{2} to 576.
\left(x-24\right)^{2}=\frac{3455}{2}
Factor x^{2}-48x+576. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-24\right)^{2}}=\sqrt{\frac{3455}{2}}
Take the square root of both sides of the equation.
x-24=\frac{\sqrt{6910}}{2} x-24=-\frac{\sqrt{6910}}{2}
Simplify.
x=\frac{\sqrt{6910}}{2}+24 x=-\frac{\sqrt{6910}}{2}+24
Add 24 to both sides of the equation.
x ^ 2 -48x -\frac{2303}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = 48 rs = -\frac{2303}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 24 - u s = 24 + u
Two numbers r and s sum up to 48 exactly when the average of the two numbers is \frac{1}{2}*48 = 24. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(24 - u) (24 + u) = -\frac{2303}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{2303}{2}
576 - u^2 = -\frac{2303}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{2303}{2}-576 = -\frac{3455}{2}
Simplify the expression by subtracting 576 on both sides
u^2 = \frac{3455}{2} u = \pm\sqrt{\frac{3455}{2}} = \pm \frac{\sqrt{3455}}{\sqrt{2}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =24 - \frac{\sqrt{3455}}{\sqrt{2}} = -17.563 s = 24 + \frac{\sqrt{3455}}{\sqrt{2}} = 65.563
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}