Solve for x
x=\sqrt{10}+2\approx 5.16227766
x=2-\sqrt{10}\approx -1.16227766
Graph
Share
Copied to clipboard
2x^{2}-8x-12=0
Multiply 2 and 6 to get 12.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-12\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+96}}{2\times 2}
Multiply -8 times -12.
x=\frac{-\left(-8\right)±\sqrt{160}}{2\times 2}
Add 64 to 96.
x=\frac{-\left(-8\right)±4\sqrt{10}}{2\times 2}
Take the square root of 160.
x=\frac{8±4\sqrt{10}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{10}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{10}+8}{4}
Now solve the equation x=\frac{8±4\sqrt{10}}{4} when ± is plus. Add 8 to 4\sqrt{10}.
x=\sqrt{10}+2
Divide 8+4\sqrt{10} by 4.
x=\frac{8-4\sqrt{10}}{4}
Now solve the equation x=\frac{8±4\sqrt{10}}{4} when ± is minus. Subtract 4\sqrt{10} from 8.
x=2-\sqrt{10}
Divide 8-4\sqrt{10} by 4.
x=\sqrt{10}+2 x=2-\sqrt{10}
The equation is now solved.
2x^{2}-8x-12=0
Multiply 2 and 6 to get 12.
2x^{2}-8x=12
Add 12 to both sides. Anything plus zero gives itself.
\frac{2x^{2}-8x}{2}=\frac{12}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=\frac{12}{2}
Divide -8 by 2.
x^{2}-4x=6
Divide 12 by 2.
x^{2}-4x+\left(-2\right)^{2}=6+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=6+4
Square -2.
x^{2}-4x+4=10
Add 6 to 4.
\left(x-2\right)^{2}=10
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
x-2=\sqrt{10} x-2=-\sqrt{10}
Simplify.
x=\sqrt{10}+2 x=2-\sqrt{10}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}